Skip to main content
Log in

Combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential of the combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for the identification of therapeutic and illicit drugs has been evaluated. Reserpine was used for standardizing experimental conditions and for characterization of the performance of the applied mass spectrometric system. Experiments revealed that because of the mass accuracy, the stability of calibration, and the reproducibility of fragmentation, the QqTOF mass spectrometer is an appropriate platform for establishment of a tandem-mass-spectral library. Three-hundred and nineteen substances were used as reference samples to build the spectral library. For each reference compound, product-ion spectra were acquired at ten different collision-energy values between 5 eV and 50 eV. For identification of unknown compounds, a library search algorithm was developed. The closeness of matching between a measured product-ion spectrum and a spectrum stored in the library was characterized by a value called “match probability”, which took into account the number of matched fragment ions, the number of fragment ions observed in the two spectra, and the sum of the intensity differences calculated for matching fragments. A large value for the match probability indicated a close match between the measured and the reference spectrum. A unique feature of the library search algorithm—an implemented spectral purification option—enables characterization of multi-contributor fragment-ion spectra. With the aid of this software feature, substances comprising only 1.0% of the total amount of binary mixtures were unequivocally assigned, in addition to the isobaric main contributors. The spectral library was successfully applied to the characterization of 39 forensic casework samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maurer HH (1998) J Chromatogr B 713:3–25

    Article  CAS  Google Scholar 

  2. Marquet P (2002) Ther Drug Monit 24:125–133

    Article  CAS  Google Scholar 

  3. Rivier L (2003) Anal Chim Acta 492:69–82

    Article  CAS  Google Scholar 

  4. Marquet P, Lachatre G (1999) J Chromatogr B 733:93–118

    Article  CAS  Google Scholar 

  5. Bogusz MJ (2000) J Chromatogr B 748:3–19

    Article  CAS  Google Scholar 

  6. Niessen WM (2003) J Chromatogr A 1000:413–436

    Article  CAS  Google Scholar 

  7. Smyth WF, Brooks P (2004) Electrophoresis 25:1413–1446

    Article  CAS  Google Scholar 

  8. Maurer HH (2005) Anal Bioanal Chem 381:110–118

    Article  CAS  Google Scholar 

  9. Bristow AW (2006) Mass Spectrom Rev 25:99–111

    Article  CAS  Google Scholar 

  10. Chernushevich IV, Loboda AV, Thomson BA (2001) J Mass Spectrom 36:849–865

    Article  CAS  Google Scholar 

  11. Hernandez F, Ibanez M, Sancho JV, Pozo OJ (2004) Anal Chem 76:4349–4357

    Article  CAS  Google Scholar 

  12. Thurman EM, Ferrer I, Fernandez-Alba AR (2005) J Chromatogr A 1067:127–134

    Article  CAS  Google Scholar 

  13. Gergov M, Boucher B, Ojanpera I, Vuori E (2001) Rapid Commun Mass Spectrom 15:521–526

    Article  CAS  Google Scholar 

  14. Nielen MW, Vissers JP, Fuchs RE, van Velde JW, Lommen A (2001) Rapid Commun Mass Spectrom 15:1577–1585

    Article  CAS  Google Scholar 

  15. Zhang H, Heinig K, Henion J (2000) J Mass Spectrom 35:423–431

    Article  CAS  Google Scholar 

  16. Pelander A, Ojanpera I, Laks S, Rasanen I, Vuori E (2003) Anal Chem 75:5710–5718

    Article  CAS  Google Scholar 

  17. Laks S, Pelander A, Vuori E, Ali-Tolppa E, Sippola E, Ojanpera I (2004) Anal Chem 76:7375–7379

    Article  CAS  Google Scholar 

  18. Hopfgartner G, Vilbois F (2000) Analusis 28:906–914

    CAS  Google Scholar 

  19. Mortishire-Smith RJ, O’Connor D, Castro-Perez JM, Kirby J (2005) Rapid Commun Mass Spectrom 19:2659–2670

    Article  CAS  Google Scholar 

  20. Shukla AK, Futrell JH (2000) J Mass Spectrom 35:1069–1090

    Article  CAS  Google Scholar 

  21. Sleno L, Volmer DA (2004) J Mass Spectrom 39:1091–1112

    Article  CAS  Google Scholar 

  22. Gabelica V, De Pauw E (2005) Mass Spectrom Rev 24:566–587

    Article  CAS  Google Scholar 

  23. Bogusz MJ, Maier RD, Kruger KD, Webb KS, Romeril J, Miller ML (1999) J Chromatogr A 844:409–418

    Article  CAS  Google Scholar 

  24. Bristow AW, Nichols WF, Webb KS, Conway B (2002) Rapid Commun Mass Spectrom 16:2374–2386

    Article  CAS  Google Scholar 

  25. Gergov M, Weinmann W, Meriluoto J, Uusitalo J, Ojanpera I (2004) Rapid Commun Mass Spectrom 18:1039–1046

    Article  CAS  Google Scholar 

  26. Weinmann W, Stoertzel M, Vogt S, Svoboda M, Schreiber A (2001) J Mass Spectrom 36:1013–1023

    Article  CAS  Google Scholar 

  27. Josephs JL, Sanders M (2004) Rapid Commun Mass Spectrom 18:743–759

    Article  CAS  Google Scholar 

  28. Weinmann W, Gergov M, Goerner M (2000) Analusis 28:934–941

    CAS  Google Scholar 

  29. Jansen R, Lachatre G, Marquet P (2005) Clin Biochem 38:362–372

    Article  CAS  Google Scholar 

  30. Milman BL (2005) Trends Anal Chem 24:493–508

    Article  CAS  Google Scholar 

  31. Lips AG, Lameijer W, Fokkens RH, Nibbering NM (2001) J Chromatogr B 759:191–207

    Article  CAS  Google Scholar 

  32. Pihlainen K, Sippola E, Kostiainen R (2003) J Chromatogr A 994:93–102

    Article  CAS  Google Scholar 

  33. Rittner M, Pragst F, Bork WR, Neumann J (2001) J Anal Toxicol 25:115–124

    CAS  Google Scholar 

  34. Schreiber A, Efer J, Engewald W (2000) J Chromatogr A 869:411–425

    Article  CAS  Google Scholar 

  35. Venisse N, Marquet P, Duchoslav E, Dupuy JL, Lachatre G (2003) J Anal Toxicol 27:7–14

    CAS  Google Scholar 

  36. Weinmann W, Wiedemann A, Eppinger B, Renz M, Svoboda M (1999) J Am Soc Mass Spectrom 10:1028–1037

    Article  CAS  Google Scholar 

  37. Slobodnik J, Hogenboom AC, Vreuls JJ, Rontree JA, van Baar BLM, Niessen WM, Brinkman UA (1996) J Chromatogr A 741:59–74

    Article  CAS  Google Scholar 

  38. Kratzsch C, Peters FT, Kraemer T, Weber AA, Maurer HH (2003) J Mass Spectrom 38:283–295

    Article  CAS  Google Scholar 

  39. Decaestecker TN, Vande C Sr, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF (2004) Anal Chem 76:6365–6373

    Article  CAS  Google Scholar 

  40. Balogh MP (2004) LC–GC Europe 17:352–359

    Google Scholar 

  41. Stolker AAM, Stephany RW, van Ginkel LA (2000) Analusis 28:947–951

    CAS  Google Scholar 

  42. Dudley E, Tuytten R, Bond A, Lemiere F, Brenton AG, Esmans EL, Newton RP (2005) Rapid Commun Mass Spectrom 19:3075–3085

    Article  CAS  Google Scholar 

  43. Marquet P, Venisse N, Lachatre G (2000) Analusis 28:925–934

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Applied Biosystems for the generous provision of the mass spectrometer and the associated equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Oberacher.

Electronic supplementary material

Below is the link to the electronic supplementary material

216_2006_634_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlic, M., Libiseller, K. & Oberacher, H. Combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs. Anal Bioanal Chem 386, 69–82 (2006). https://doi.org/10.1007/s00216-006-0634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0634-8

Keywords

Navigation