Skip to main content
Log in

An improved algorithm for the normalized elimination of the small-component method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new algorithm for the iterative solution of the normalized elimination of the small component (NESC) method is presented that is less costly than previous algorithms and that is based on (1) solving the NESC equations for the uncontracted rather than contracted basis (“First-Diagonalize-then-Contract”), (2) a new iterative procedure for obtaining the NESC Hamiltonian (“iterative TU algorithm”), (3) the renormalization scheme connected to the picture change, and (4) a finite nucleus model with a Gaussian charge distribution. The accuracy of NESC energies, which match those of 4-component Dirac calculations, is demonstrated. Test calculations with CCSD(T), DFT, and large basis sets including high angular momentum basis functions (f,g,h,i) are presented to prove the general applicability of the new NESC algorithm. Comparison with other algorithms of solving the NESC equations are shortly discussed and time savings are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dirac PAM (1928) Proc Roy Soc Lond A 117:610

    Article  Google Scholar 

  2. Dirac PAM (1929) Proc Roy Soc Lond A 123:714

    Article  CAS  Google Scholar 

  3. Dyall KG, Fægri K (2007) Introduction to relativistic quantum chemistry. Oxford University Press, Oxford

    Google Scholar 

  4. Reiher M, Wolf A (2009) Relativistic quantum chemistry, the fundamental theory of molecular science. Wiley-VCH, Weinheim

    Google Scholar 

  5. Liu W (2010) Mol Phys 108:1679

    Article  CAS  Google Scholar 

  6. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29

    Article  Google Scholar 

  7. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  8. Hess BA (1985) Phys Rev A 32:756

    Article  CAS  Google Scholar 

  9. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  10. Jansen G, Hess BA (1989) Phys Rev A 39:6061

    Article  Google Scholar 

  11. Samzow R, Hess BA, Jansen G (1992) J Chem Phys 96:1227

    Article  CAS  Google Scholar 

  12. Nakajima T, Hirao K (2000) J Chem Phys 113:7786

    Article  CAS  Google Scholar 

  13. van Wuellen C (2004) J Chem Phys 120:7307

    Article  Google Scholar 

  14. Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215

    Article  CAS  Google Scholar 

  15. Wolf A, Reiher M, Hess BA (2004) J Chem Phys 120:8624

    Article  CAS  Google Scholar 

  16. Reiher M, Wolf A (2004) J Chem Phys 121:2037

    Article  CAS  Google Scholar 

  17. Reiher M, Wolf A (2004) J Chem Phys 121:10945

    Article  CAS  Google Scholar 

  18. Seino J, Uesugi W, Haeda M (2010) J Chem Phys 132:164108

    Article  Google Scholar 

  19. Chang CPM, Durand M (1986) Phys Scr 34:394

    Article  CAS  Google Scholar 

  20. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  Google Scholar 

  21. Dyall KG, van Lenthe E (1999) J Chem Phys 111:1366

    Article  CAS  Google Scholar 

  22. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783

    Article  Google Scholar 

  23. van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943

    Article  Google Scholar 

  24. Filatov M (2002) Chem Phys Lett 365:222

    Article  CAS  Google Scholar 

  25. Filatov M, Cremer D (2003) Mol Phys 101:2295

    Article  CAS  Google Scholar 

  26. Filatov M, Cremer D (2003) J Chem Phys 118:6741

    Article  CAS  Google Scholar 

  27. Filatov M, Cremer D (2003) J Chem Phys 119:1412

    Article  CAS  Google Scholar 

  28. Filatov M, Cremer D (2003) J Chem Phys 119:11526

    Article  CAS  Google Scholar 

  29. Filatov M, Cremer D (2005) J Chem Phys 122:044104

    Article  Google Scholar 

  30. Filatov M, Cremer D (2005) J Chem Phys 122:064104

    Article  Google Scholar 

  31. Dyall KG (1997) J Chem Phys 106:9618

    Article  CAS  Google Scholar 

  32. Dyall KG (2002) J Comp Chem. 23:786

    Article  CAS  Google Scholar 

  33. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  34. Dyall KG, Fægri K (1990) Chem Phys Lett 174:25

    Article  CAS  Google Scholar 

  35. Dyall KG, Enevoldsen T (1999) J Chem Phys 111:10000

    Article  CAS  Google Scholar 

  36. Filatov M, Cremer D (2002) Theor Chem Acc 108:168

    Article  CAS  Google Scholar 

  37. Filatov M, Cremer D (2002) Chem Phys Lett 351:259

    Article  CAS  Google Scholar 

  38. Filatov M, Dyall KG (2007) Theor Chem Acc 117:333

    Article  CAS  Google Scholar 

  39. Komorovsky S, Repisky M, Malkina OI, Malkin VG, Malkin I, Kaupp M (2006) J Chem Phys 124:084108

    Article  Google Scholar 

  40. Peng D, Liu W, Xiao Y, Cheng L (2007) J Chem Phys 127:104106

    Article  Google Scholar 

  41. Barysz M, Sadlej AJ, Snijders JG (1997) Int J Quantum Chem 65:225

    Article  CAS  Google Scholar 

  42. Barysz M, Sadlej AJ (2002) J Chem Phys 116:2696

    Article  CAS  Google Scholar 

  43. Kedziera D, Barysz M (2004) J Chem Phys 121:6719

    Article  CAS  Google Scholar 

  44. Kedziera D, Barysz M (2004) Chem Phys Lett 521:3093

    Google Scholar 

  45. Kedziera D (2005) J Chem Phys 123:074109

    Article  Google Scholar 

  46. Kedziera D, Barysz M (2007) Chem Phys Lett 446:176

    Article  CAS  Google Scholar 

  47. Barysz M, Mentel L, Leszczynski J (2009) J Chem Phys 130:164114

    Article  Google Scholar 

  48. Iliaš M, Jensen HJA, Roos BO, Urban M (2005) Chem Phys Lett 408:210

    Article  Google Scholar 

  49. Iliaš M, Saue T (2007) J Chem Phys 126:064102

    Article  Google Scholar 

  50. Kutzelnigg W, Liu W (2005) J Chem Phys 123:241102

    Article  Google Scholar 

  51. Kutzelnigg W, Liu W (2006) Mol Phys 104:2225

    Article  CAS  Google Scholar 

  52. Liu W, Kutzelnigg W (2007) J Chem Phys 126:114107

    Article  Google Scholar 

  53. Liu W, Peng D (2009) J Chem Phys 131:031104

    Article  Google Scholar 

  54. Kutzelnigg W, Liu W (2006) J Chem Phys 125:107102

    Article  Google Scholar 

  55. Filatov M (2006) J Chem Phys 125:107101

    Article  Google Scholar 

  56. Zou W, Filatov M, Cremer D (2011) J Chem Phys 134:244117

    Article  Google Scholar 

  57. Cremer D, Kraka E (2010) Curr Org Chem 14:1524

    Article  CAS  Google Scholar 

  58. Kraka E (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 4. Wiley, Chichester, pp 2437

  59. Gabrielse G, Hanneke D, Kinoshita T, Nio M, Odom B (2006) Phys Rev Lett 97:030802

    Article  CAS  Google Scholar 

  60. Henderson HV, Searle SR (1981) SIAM Rev 23:53

    Article  Google Scholar 

  61. Lancaster P, Rodman L (1995) Algebraic Riccati equations. Oxford University Press, Oxford

    Google Scholar 

  62. Bini DA, Meini B, Poloni F (2008) In numerical methods for structured Markov chains. In: Bini, Meini B, Ramaswami V, Remiche M-A, and Taylor P (eds) Dagstuhl seminar proceedings no. 07461, http://drops.dagstuhl.de/opus/volltexte/2008/1398, (Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany)

  63. Saue T,Visscher L, Jensen HJA, Bast R, Dyall KG, Ekström U, Eliav E, Enevoldsen T, Fleig T, Gomes ASP, Henriksson J, Iliaš M, Jacob CR, Knecht S, Nataraj HS, Norman P, Olsen J, Pernpointner M, Ruud K, Schimmelpfennig B, Sikkema J, Thorvaldsen A, Thyssen J, Villaume S, Yamamoto S (2010) DIRAC, a relativistic ab initio electronic structure program. Release DIRAC10 (http://dirac.chem.vu.nl, 2010)

  64. Peng D, Hirao K (2009) J Chem Phys 130:044102

    Article  Google Scholar 

  65. Heath MT (2002) Scientific computing: an introductory survey. McGraw-Hill, New York, pp 151–181

    Google Scholar 

  66. Jansson J, Logg A (2008) ACM Trans Math Softw 35:17:1

    Article  Google Scholar 

  67. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) J Chem Theory Comput 4:908

    Article  CAS  Google Scholar 

  68. Dyall KG (2009) J Phys Chem A 113:12638

    Article  CAS  Google Scholar 

  69. Dyall KG (2011) Theor Chem Acc 129:603

    Article  CAS  Google Scholar 

  70. Dyall KG (2001) J Chem Phys 115:9136

    Article  CAS  Google Scholar 

  71. Schimmelpfennig B, Maron L, Wahlgren U, Teichteil C, Fagerli H, Gropen O (1998) Chem Phys Lett 286:267

    Article  CAS  Google Scholar 

  72. Reiher M (2006) Theor Chem Acc 116:241

    Article  CAS  Google Scholar 

  73. Kraka E, Gräfenstein J, Filatov M, Joo H, Izotov D, Gauss J, He Y, Wu A, Polo V, Olsson L, Konkoli Z, He Z, Zou W, Cremer D (2010) COLOGNE2010

  74. Fedorov DG, Nakajima T, Hirao K (2001) Chem Phys Lett 335:183

    Article  CAS  Google Scholar 

  75. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  76. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  77. Cremer D, Kraka E, Filatov M (2008) Chem Phys Chem 9:2510

    Article  CAS  Google Scholar 

  78. Feller D (1996) J Comp Chem 17:1571

    CAS  Google Scholar 

  79. Peterson KA, Yousaf KE (2010) J Chem Phys 133:174116

    Article  Google Scholar 

  80. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  81. Adamo C, Barone V (1998) J Chem Phys 110:6158

    Article  Google Scholar 

  82. Kim YK (1967) Phys Rev 154:17

    Article  CAS  Google Scholar 

  83. Schwarz WHE, Wallmeier H (1982) Mol Phys 46:1045

    Article  CAS  Google Scholar 

  84. Schwarz WHE, Wechsel-Trakowski E (1982) Chem Phys Lett 85:94

    Article  CAS  Google Scholar 

  85. Chase MW (1998) J Phys Chem Ref Data Monogr 9:1

    Google Scholar 

  86. Tellinghuisen J, Tellinghuisen PC, Davies SA, Berwanger P, Viswanathan KS (1982) Appl Phys Lett 41:789

    Article  CAS  Google Scholar 

  87. Wilcomb BE, Bernstein RB (1976) J Mol Spectrosc 62:442

    Article  CAS  Google Scholar 

  88. Ullas G, Rai SB, Rai DK (1992) J Phys B At Mol Phys 25:4497

    Article  CAS  Google Scholar 

  89. Salter C, Tellinghuisen PC, Ashmore JG, Tellinghuisen J (1986) J Mol Spectrosc 120:334

    Article  CAS  Google Scholar 

  90. Zou W, Liu W (2009) J Comput Chem 30:524

    Article  CAS  Google Scholar 

  91. Khalizov AF, Viswanathan B, Larregaray P, Ariya PA (2003) J Phys Chem A 107:6360

    Article  CAS  Google Scholar 

  92. Shepler BC, Balabanov NB, Peterson KA (2005) J Phys Chem A 109:10363

    Article  CAS  Google Scholar 

  93. Iliaš M, Kellö V, Visscher L, Schimmelpfennig B (2001) J Chem Phys 115:9667

    Article  Google Scholar 

  94. Dyall KG (2000) Int J Quantum Chem 78:412

    Article  CAS  Google Scholar 

  95. Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation, Grant CHE 071893. We thank SMU for providing computational resources. MF is grateful to SMU for the invitation as a visiting professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Cremer.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Filatov, M. & Cremer, D. An improved algorithm for the normalized elimination of the small-component method. Theor Chem Acc 130, 633–644 (2011). https://doi.org/10.1007/s00214-011-1007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1007-8

Keywords

Navigation