Skip to main content

The Importance of Orbital Analysis

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 29))

  • 806 Accesses

Abstract

It has long been known that there are multiple solutions to the self-consistent Hartree-Fock equations. This can be problematic if careful attention is not given to the orbital occupation and electronic state in the converged wave function. The issues with convergence have been demonstrated through the calculation of potential energy curves for O2, F2, Cl2, Br2, LiF, NaCl, CaO, MgO, ScO, FeO, TiO, YO, and ZrO. Hartree-Fock (HF) calculations were used to compute the points on the potential energy surface, with dynamic electron correlation included through the use of the completely renormalized coupled cluster, including singles, doubles, and perturbative triples [CR-CC(2,3)]. Even in regions with little to no multireference character, as determined by the T1/D1 diagnostics, HF does not always converge to the ground electronic state. As HF provides the reference wave function for CR-CC(2,3), and other post-Hartree-Fock ab initio methods, treatment of electron correlation does not necessarily result in a smooth potential energy curve, especially if HF is unable to produce a smooth curve. Even the convergence rate of multireference methods can be affected as the initial orbitals that form the basis for multireference calculations are frequently obtained from HF calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanton RE (1968) J Chem Phys 48:257

    Article  CAS  Google Scholar 

  2. Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112:13164

    Article  CAS  Google Scholar 

  3. Sears JC, Sherrill CD (2006) J Chem Phys 124:144314

    Google Scholar 

  4. Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, West Sussex, p 182

    Google Scholar 

  5. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, West Sussex

    Google Scholar 

  6. Plakhutin BN, Davidson ER (2009) J Phys Chem A 113:12386

    Article  CAS  Google Scholar 

  7. Ghanty TK, Davidson ER (2000) Int J Quantum Chem 77:291

    Article  CAS  Google Scholar 

  8. Lynch BJ, Truhlar DG (2002) Chem Phys Lett 361:251

    Article  CAS  Google Scholar 

  9. Morokuma K, Iwata S (1972) Chem Phys Lett 16:192

    Article  CAS  Google Scholar 

  10. Schoendorff G, South C, Wilson AK (2013) J Phys Chem A 117:42

    Article  Google Scholar 

  11. Seeger R, Pople JA (1977) J Chem Phys 66:3045

    Article  CAS  Google Scholar 

  12. Pulay P (1982) J Comp Chem 3:556

    Article  CAS  Google Scholar 

  13. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JT (1993) J Comput Chem R1:1347

    Article  Google Scholar 

  14. Feller D, Peterson KA, Crawford TD (2006) J Chem Phys 124:054107

    Google Scholar 

  15. Piecuch P, Wloch M (2005) J Chem Phys 123:1–224105

    Article  Google Scholar 

  16. Wloch M, Gour JR, Piecuch P (2007) J Phys Chem A 111:11359

    Article  CAS  Google Scholar 

  17. Krylov AI (2001) Chem Phys Lett 338:375

    Article  CAS  Google Scholar 

  18. Krylov AI, Slipchenko LV, Levchenko SV (2007) ACS Symp Ser 958:89

    Article  CAS  Google Scholar 

  19. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108

    Article  CAS  Google Scholar 

  20. Anderrson K, Malmqvist P, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  Google Scholar 

  21. Schmidt MW, Gordon MS (1998) Annu Rev Phys Chem 49:233

    Article  CAS  Google Scholar 

  22. Pulay P (2011) Int J Quantum Chem 111:3273

    Article  CAS  Google Scholar 

  23. Burke K (2012) J Chem Phys 136:150901

    Article  Google Scholar 

  24. Huber KP, Herzberg G Constants of diatomic molecules. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database, vol 69. National Institute of Standards and Technology, Gaithersburg, MD, 20899 http://webbook.nist.gov, (Retrieved 6 Sept 2014)

  25. Lee TJ, Taylor PR (1989) Int J Quantum Chem 23:199

    CAS  Google Scholar 

  26. Janssen CL, Nielsen IMB (1998) Chem Phys Lett 290:423

    Article  CAS  Google Scholar 

  27. Lee TJ (2003) Chem Phys Lett 372:362

    Article  CAS  Google Scholar 

  28. Jiang W, DeYonker NJ, Determan JJ, Wilson AK (2012) J Phys Chem A 116:870

    Article  CAS  Google Scholar 

  29. Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124

    Article  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  35. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810

    Article  CAS  Google Scholar 

  36. Simons J (1991) J Phys Chem 95:1017

    Article  CAS  Google Scholar 

  37. Velders GJM, Feil D (1992) J Phys Chem 96:10725

    Article  CAS  Google Scholar 

  38. Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Article  CAS  Google Scholar 

  39. Engelking PC, Lineberger WC (1977) J Chem Phys 6:5054

    Article  Google Scholar 

  40. Bagus PS, Preston HJT (1973) J Chem Phys 59:2986

    Article  CAS  Google Scholar 

  41. Lykos P, Pratt GW (1963) Rev Mod Phys 35:496

    Article  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the National Science Foundation under grant numbers CHE-1213874 and instrument support was provided via CHE-0741936. RJW acknowledges support from the National Science Foundation GFRP under grant number DGE-1144248. Additional computing resources were provided by the Academic Computing Services at the University of North Texas. Support from the United States Department of Energy for the Center for Advanced Scientific Computing and Modeling (CASCaM) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela K. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Weber, R., Schoendorff, G., Wilson, A.K. (2015). The Importance of Orbital Analysis. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_1

Download citation

Publish with us

Policies and ethics