Skip to main content

Advertisement

Log in

Specificity evaluation of antibodies against human β3-adrenoceptors

  • Original Paper
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

β3-Adrenoceptors are a promising drug target for the treatment of urinary bladder dysfunction, but knowledge about their expression at the protein level and their functional role is limited, partly due to a lack of well validated tools. As many antibodies against G-protein-coupled receptors, including those against β3- and other β-adrenoceptor subtypes, lack selectivity for their target, we have evaluated the specificity of five antibodies raised against the full-length protein of the human β3-adrenoceptor (H155-B01), its N-terminus (LSA4198 and TA303277) and its C-terminus (AB5122, Sc1472) in immunoblotting and immunocytochemistry. Our primary test system were Chinese hamster ovary cells stably transfected to express each of the three human β-adrenoceptor subtypes at near physiological levels (100–200 fmol/mg protein). None of the five antibodies exhibited convincing target specificity in immunoblotting with Sc1472 apparently being least unsuitable. In immunocytochemistry, LSA4198 and Sc1472 appeared most promising, exhibiting at least some degree of specificity. As these two antibodies have been raised against different epitopes (N- and C-terminus of the receptor, respectively), we propose that concordant staining by both antibodies provides the most convincing evidence for β3-adrenoceptor labelling in cyto- or histochemistry studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anastasio NC, Lanfranco MF, Burbar MJ, Seitz PK, Stutz SJ, McGinnis AG, Watson CS, Cunningham KA (2010) Serotonin 5-HT2C receptor protein expression is enriched in synaptosomal and post-synaptic compartments of rat cortex. J Neurochem 133:1504–1515

    Google Scholar 

  • Arch JRS (2008) Perspectives from β3-adrenoceptor agonists on pharmacology, physiology and obesity drug discovery. Naunyn-Schmiedeberg’s Arch Pharmacol 378:225–240

    Article  CAS  Google Scholar 

  • Arch JR, Wilson S (1996) Prospect for beta3-adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obes Relat Metab Disord 20:191–199

    PubMed  CAS  Google Scholar 

  • Arch JRS, Ainsworth AT, Ellis RD, Piercy V, Thody VE, Thurlby PL, Wilson C, Wilson S, Young P (1984) Treatment of obesity with thermogenic beta-adrenoceptor agonists: studies on BRL 26830A in rodents. Int J Obes 8:1–11

    PubMed  CAS  Google Scholar 

  • Beermann S, Seifert R, Neumann D (2012) Commercially available antibodies against human and murine histamine H4-receptor lack specificity. Naunyn-Schmiedeberg’s Arch Pharmacol 385:125–135

    Article  CAS  Google Scholar 

  • Bossard F, Silantieff E, Lavazais-Blancou E, Robay A, Sagan C, Rozec B, Gauthier C (2011) β1, β2 and β3 adrenoceptors and Na+/H+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis. Am J Respir Cell Mol Biol 44:91–98

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brixius K, Bloch W, Ziskoven C, Bolck B, Napp A, Pott C, Steinritz D, Jiminez M, Assicks K, Giacobino JP, Schwinger RH (2006) Beta3-adrenergic eNOS stimulation in left ventricular murine myocardium. Can J Physiol Pharmacol 84:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, Liu C-C, Garcia A, Hamilton EJ, Huang Y, Chia KKM, Hunyor SN, Figtree GA, Rasmussen HH (2010) b3 adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 122:1699–1708

    Article  Google Scholar 

  • Chamberlain PD, Jennings KH, Paul F, Cordell J, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human β3-adrenoceptor studied using a monoclonal antibody: direct evidence of the β3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Connacher AA, Lakie M, Powers N, Elton RA, Walsh EG, Jung RI (1990) Tremor and the anit-obesity drug BRL 26830A. Br J Clin Pharmacol 30:613–615

    Article  PubMed  CAS  Google Scholar 

  • Croci T, Cecchi R, Marini P, Rouget C, Viviani N, Germain G, Guagnini F, Fradin Y, Descamps L, Pascal M, Advenier C, Breuiller-Fouche M, Leroy MJ, Bardou M (2007) In vitro and in vivo pharmacological characterization of ethyl-4-[trans-4-[((2 S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl)amino]-phenoxy]propyl) amino]cyclohexyl]benzoate hydrochloride (SAR150640), a new potent and selective human beta3-adrenoceptor agonist for the treatment of preterm labor. J Pharmacol Exp Ther 32:1118–1126

    Article  Google Scholar 

  • Danforth E Jr, Himms-Hagen JH (1997) Obesity and diabetes and the beta3-adrenergic receptor. Eur J Endocrinol 136:362–365

    Article  PubMed  CAS  Google Scholar 

  • De Matteis R, Arch JRS, Petroni ML, Ferrari D, Cinti S, Stock MJ (2002) Immunohistochemical identification of the β3-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int J Obesity 26:1442–1450

    Article  Google Scholar 

  • Grol S, Nile CJ, Martinez-Martinez P, van Koeveringe GA, de Wachter SGG, de Vente J, Gillespie JI (2011) M3 muscarinic receptor like immuno-reactivity (M3-IR) in sham-operated and obstructed guinea pig bladders. J Urol 185:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA, Corkey BE, Lowell BB (1997) Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272:17686–17693

    Article  PubMed  CAS  Google Scholar 

  • Guillaume JL, Petitjean F, Haasemann M, Bianchi C, Eshdat Y, Strosberg AD (1994) Antibodies for the immunochemistry of the human β3-adrenergic receptor. Eur J Biochem 224:761–770

    Article  PubMed  CAS  Google Scholar 

  • Hamdani N, van der Velden J (2009) Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 379:403–407

    Article  CAS  Google Scholar 

  • Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz K-N (2004) Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  • Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Lipid Med 89:82–88

    Article  CAS  Google Scholar 

  • Khullar V, Ströberg P, Anuglo J, Boerrigter P, Blauwet MB, Wooning M (2011) The efficacy and tolerability of mirabegron in patients with overactive bladder—results from a European-Australian phase III trial. Eur Urol Suppl 10:278–279

    Article  Google Scholar 

  • Kullmann FA, Limberg BJ, Artim DE, Shah M, Downs TR, Contract D, Wos J, Rosenbaum JS, De Groat WC (2009) Effects of β3-adrenergic receptor activation on rat urinary bladder hyperactivity induced by ovariectomy. J Pharmacol Exp Ther 330:704–717

    Article  PubMed  CAS  Google Scholar 

  • Kullmann FA, Downs TR, Artim DE, Limberg BJ, Shah M, Contract D, de Groat WC, Rosenbaum JS (2011) Urothelial beta-3 adrenergic receptors in the rat bladder. Neurourol Urodyn 30:144–150

    Article  PubMed  CAS  Google Scholar 

  • Limberg BJ, Andersson KE, Kullmann FA, Burmer G, de Groat WC, Rosenbaum JS (2010) Beta-adrenergic receptor subtype expression in myocyte and non-myocyte cells in human female bladder. Cell Tissue Res 342:295–306

    Article  PubMed  CAS  Google Scholar 

  • Lorincz A, Nusser Z (2008) Specificity of immunoreactions: the importance of testing specificity in each method. J Neurosci 28(37):9038–9086

    Article  Google Scholar 

  • McFarlane HO, Joseph NT, Maddineni SR, Ramachandran R, Bedecarrats GY (2011) Development, validation, and utilization of a novel antibody specific to the type III chicken gonadotropin-releasing hormone receptor. Dom Animal Endocrinol 40:110–118

    Article  CAS  Google Scholar 

  • Michel MC, Vrydag W (2006) α1-, α2- and β-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147:S88–S119

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn-Schmiedeberg’s Arch Pharmacol 377:385–388

    Article  Google Scholar 

  • Michel MC, Ochodnicky P, Summers RJ (2010) Tissue functions mediated by β3-adrenoceptors—findings and challenges. Naunyn-Schmiedeberg’s Arch Pharmacol 382:103–108

    Article  CAS  Google Scholar 

  • Michel MC, Cernecka H, Ochodnicky P (2011a) Desirable properties of β3-adrenoceptor agonists: implications for the selection of drug development candidates. Eur J Pharmacol 657:1–3

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Ochodnicky P, Homma Y, Igawa Y (2011b) β-Adrenoceptor agonist effects in experimental models of bladder dysfunction. Pharmacol Ther 131:40–49

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Miwa T, Sakamoto K, Nakahara T, Ishii K (2010) Pharmacological evidence for the presence of functional β3-adrenoceptors in rat retinal blood vessels. Naunyn-Schmiedeberg’s Arch Pharmacol 382:119–126

    Article  CAS  Google Scholar 

  • Niclauß N, Michel-Reher MB, Alewijnse AE, Michel MC (2006) Comparison of three radioligands for the labelling of human β-adrenoceptor subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 374:79–85

    Article  Google Scholar 

  • Nitti V, Herschorn S, Auerbach S, Ayers S, Lee M, Martin N (2011) The efficacy and safety of mirabegron in patients with overactive bladder syndrome—results from a North-American phase III trial. Eur Urol Suppl 10:278

    Article  Google Scholar 

  • Ochodnicky P, Humphreys S, Eccles R, Poljakovic M, Wiklund P, Michel MC (2012) Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines. BJU Int. doi:10.1111/j.1464-410X.2012.11145.x

  • Perfetti R, Hui H, Charnie K, Binder S, Seibert M, McLenithan J, Silver K, Walston JD (2001) Pancreatic β-cells expressing the Arg64 variant of the β3-adrenergic receptor exhibit abnormal insulin secretory activity. J Mol Endocrinol 27:133–144

    Article  PubMed  CAS  Google Scholar 

  • Petrusz P, Sar M, Ordronneau P, DiMeo P (1976) Specificity in immunocytochemical staining. J Histochem Cytochem 24:1110–1112

    Article  PubMed  CAS  Google Scholar 

  • Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC, Lamers WH (2009) Lack of specificity of commercially available antisera against muscarinic and adrenergic receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 379:397–402

    Article  CAS  Google Scholar 

  • Randriamboavonjy V, Badenhoop K, Schmidt H, Geisslinger G, Fisslthaler B, Fleming I (2009) The S1P2 receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes. Bas Res Cardiol 104:333–340

    Article  CAS  Google Scholar 

  • Rasmussen HH, Figtree GA, Krum H, Bundgaard H (2009) The use of beta3-adrenergic receptor agonists in the treatment of heart failure. Curr Opin Investig Drugs 10:955–962

    PubMed  CAS  Google Scholar 

  • Rouget C, Bardou M, Breuiller-Fouche M, Loustalot C, Naline HQE, Croci T, Cabrol D, Advenier C, Leroy MJ (2005) β3-adrenoceptor is the predominant β-adrenoceptor subtype in human myometrium and its expression is up-regulated in pregnancy. J Clin Endocrinol Metabol 90(3):1644–1650

    Article  CAS  Google Scholar 

  • Skliris GP, Parkers AT, Limer JL, Burdall SE, Carder PJ, Speirs V (2002) Evaluation of seven oestrogen receptor β antibodies for immunohistochemistry, western blotting, and flow cytometry in human breast tissue. J Pathol 197:155–162

    Article  PubMed  CAS  Google Scholar 

  • Steinle JJ, Booz GW, Meininger CJ, Day JN, Granger HJ (2003) β3-adrenergic receptors regulate retinal endothelial cell migration and proliferation. J Biol Chem 278:20681–20686

    Article  PubMed  CAS  Google Scholar 

  • Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Francon D, Alonso R, Stahl SM, Keane P, Avenet P, Scatton B, le Fur G, Griebel G (2008) Stimulation of the β3-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 33:574–587

    Article  PubMed  CAS  Google Scholar 

  • Stiles GL, Benovic JL, Caron MG, Lefkowitz RJ (1984) Mammalian beta-adrenergic receptors. Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains. J Biol Chem 259:8655–8663

    PubMed  CAS  Google Scholar 

  • Strosberg AD, Pietri-Rouxel F (1996) Function and regulation of the β3-adrenoceptor. Trends Pharmacol Sci 17:373–381

    Article  PubMed  CAS  Google Scholar 

  • Tate KM, Briend-Sutren MM, Emorine LJ, Delavier-Klutchko C, Marullo S, Strosberg AD (1991) Expression of three human β-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem 196:357–361

    Article  PubMed  CAS  Google Scholar 

  • Ursino MG, Vasina V, Raschi E, Crema F, De Ponti F (2009) The β3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res 59:221–234

    Article  PubMed  CAS  Google Scholar 

  • Vrydag W, Michel MC (2007) Tools to study β3-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 374:385–398

    Article  CAS  Google Scholar 

  • Yamaguchi O, Chapple CR (2007) β3-Adrenoceptors in urinary bladder. Neurourol Urodyn 26:752–756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dave Speijer (Dept. Biochemistry, AMC) and Dr. Maurice van den Hoff (Dept. Anatomy, AMC) for their help and advice. This work was funded in part by a grant from Astellas Europe BV and through Coordination Theme 1 (Health) of the European Community’s FP7, grant agreement number HEALTH-F2-2008-223234. M.C. Michel has been a paid consultant to AltheRx and Astellas in the β3-adrenoceptor field and is an employee of Boehringer Ingelheim Pharma GmbH & Co KG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernecka, H., Ochodnicky, P., Lamers, W.H. et al. Specificity evaluation of antibodies against human β3-adrenoceptors. Naunyn-Schmiedeberg's Arch Pharmacol 385, 875–882 (2012). https://doi.org/10.1007/s00210-012-0767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0767-6

Keywords

Navigation