Skip to main content
Log in

Evolution of spacelike surfaces in \(\mathrm{AdS}_3\) by their Lagrangian angle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study spacelike hypersurfaces \(M\) in an anti-De Sitter spacetime \(N\) of constant sectional curvature \(-\kappa , \kappa >0\) that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature \(K\) of the initial surface \(M\subset N\) and the sectional curvature of \(N\) satisfy \(|K|<\kappa \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Choose an arbitrary unit tangent vector \(e\) of \(T_pM\) and let \(V=W=Ce\), where \(C\) denotes the complex structure on \(M\) induced by the orientation and Riemannian metric on \(M\).

References

  1. Andrews, B.: Positively Curved Surfaces in the Three-Sphere. Higher ed. Press, Beijing (2002)

    Google Scholar 

  2. Andrews, B.: Fully nonlinear parabolic equations in two space variables. arXiv:math/0402235 (2004)

  3. Andersson, L., Barbot, T., Benedetti, R., Bonsante, F., Goldman, W.M., Labourie, F., Scannell, K.P., Schlenker, J.-M.: Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45; MR2328921] by G. Mess. Geom. Dedicata 126, 47–70 (2007)

  4. Barbot, T.: Causal properties of AdS-isometry groups. I. Causal actions and limit sets. Adv. Theor. Math. Phys. 12(1), 1–66 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Benedetti, R.: Canonical Wick rotations in 3-dimensional gravity. Mem. Am. Math. Soc. 198(926), viii+164 (2009)

  6. Castro, I., Urbano, F.: Minimal Lagrangian surfaces in \(S^2\times S^2\). Commun. Anal. Geom 15(2), 217–248 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Ecker, K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Geom. 46(3), 481–498 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Ecker, K.: On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetimes. J. Austral. Math. Soc. Ser. A 55(1), 41–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ecker, K., Huisken, G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135(3), 595–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerhardt, C.: Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds. J. Reine Angew. Math. 554, 157–199 (2003)

    Google Scholar 

  11. Goldman, W.M.: Nonstandard Lorentz space forms. J. Differ. Geom. 21(2), 301–308 (1985)

    MATH  Google Scholar 

  12. Kulkarni, R.S., Frank, R.: \(3\)-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom. 21(2), 231–268 (1985)

    MATH  Google Scholar 

  13. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Scannell, K.P.: Flat conformal structures and the classification of de Sitter manifolds. Commun. Anal. Geom. 7(2), 325–345 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Smoczyk, K.: Longtime existence of the Lagrangian mean curvature flow. Calc. Var. Partial Differ. Equ. 20(1), 25–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smoczyk, K., Wang, M.-T.: Mean curvature flows of Lagrangian submanifolds with convex potentials. J. Differ. Geom. 62(2), 243–257 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Smoczyk, K., Wang, M.-T.: Generalized Lagrangian mean curvature flows in symplectic manifolds. Asian J. Math. 15(1), 129–140 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Torralbo, F. Urbano, F.: Surfaces with parallel mean curvature vector in \(\mathbb{S}^2\times \mathbb{S}^2\) and \(\mathbb{H}^2\times \mathbb{H}^2\). arXiv:0807.1808v2 [math.DG] (2008)

  19. Torralbo, F.: Minimal Lagrangian immersions in \(\mathbb{RH}^2\times \mathbb{RH}^2\) Symposium on the differential geometry of submanifolds (Valenciennes: Université de Valenciennes 2007), pp. 217–220 (2007)

  20. Tsui, M.-P., Wang, M.-T.: Mean curvature flows and isotopy of maps between spheres Commun. Pure Appl. Math. 57(8), 1110–1126. doi:10.1002/cpa.20022 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Smoczyk.

Appendix

Appendix

With the same notations as before let us now assume that \(F:M\rightarrow N\) is a spacelike immersion of a surface \(M\) into the anti-De Sitter manifold \(N=\mathrm{AdS}_3\), represented by

$$\begin{aligned} \mathrm{AdS}_3=\{V\in \mathbb R _2^4:\left\langle {V},{V}\right\rangle _{~_{2,4}}=-1\} \end{aligned}$$

with its induced Lorentzian metric \(\left\langle {\cdot },{\cdot }\right\rangle _{~_{N}}\) that it inherits from \(\mathbb R _2^4=({\mathbb R ^{4}},\left\langle {\cdot },{\cdot }\right\rangle _{~_{2,4}})\), where the inner product on \(\mathbb R _2^4\) is given by

$$\begin{aligned} \left\langle {V},{W}\right\rangle _{~_{2,4}}=V^1W^1+V^2W^2-V^3W^3-V^4W^4. \end{aligned}$$

\(\mathrm{AdS}_3\) is a \(3\)-dimensional Lorentzian space form of constant sectional curvature \(-1\) and is a vacuum solution of Einstein’s equation with cosmological constant \(\varLambda <0\). \(\mathrm{AdS}_3\) contains closed timelike curves and hence is not simply connected. The simply connected universal cover of \(\mathrm{AdS}_3\) will also be called anti-De Sitter space and we denote it \(\widetilde{\mathrm{AdS}_3}\).

Thus an immersion \(F:M\rightarrow \mathrm{AdS}_3\) can also be seen as an immersion of \(M\) into \(\mathbb R _2^4\). The Gauß map of \(F\) is the map

$$\begin{aligned} \fancyscript{G}:M\rightarrow Gr_2^+(2,4),\quad p\mapsto T_pM\in Gr_2^+(2,4), \end{aligned}$$

where \(T_pM\) is considered as an oriented spacelike surface in \(\mathbb R _2^4\) and \(Gr_2^+(2,4)\) denotes the Grassmannian of oriented spacelike surfaces in \(\mathbb R _2^4\). It is well known that the Grassmannian \(Gr_2^+(2,4)\) is isometric to \(\mathbb H _{1/\sqrt{2}}\times \mathbb H _{1/\sqrt{2}}\), where \(\mathbb H _{1/\sqrt{2}}\) denotes the scaled hyperbolic plane

$$\begin{aligned} \mathbb H _{1/\sqrt{2}}:=\left\{ V\in \mathbb R _1^3:\left\langle {V},{V}\right\rangle _{~_{1,3}}=-\frac{1}{2}, V^3>0\right\} , \end{aligned}$$

where \((\mathbb R _1^3,\left\langle {\cdot },{\cdot }\right\rangle _{~_{1,3}})\) denotes the usual Minkowski space. To understand the geometry of the Gauß map \(\fancyscript{G}\) it is convenient to use the isometry between \(Gr_2^+(2,4)\) and \(\mathbb H _{1/\sqrt{2}}\times \mathbb H _{1/\sqrt{2}}\) (since the sectional curvature of \(\mathbb H _{1/\sqrt{2}}\) is \(-2, Gr_2^+(2,4)\) is a Kähler–Einstein manifold of scalar curvature \(S=-8\)).

Let \(e_1,e_2,e_3,e_4\) denote the standard basis of \({\mathbb R ^{4}}\). We introduce a set of endomorphisms on \({\mathbb R ^{4}}\):

$$\begin{aligned} E_+^1:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} e_4\\ -e_3\\ -e_2\\ e_1 \end{array}\right),&\quad E_-^1:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} -e_4\\ -e_3\\ -e_2\\ -e_1 \end{array}\right), \nonumber \\ E_+^2:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} -e_3\\ -e_4\\ -e_1\\ -e_2 \end{array}\right),&\quad E_-^2:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} -e_3\\ e_4\\ -e_1\\ e_2 \end{array}\right),\\ E_+^3:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} e_2\\ -e_1\\ -e_4\\ e_3 \end{array}\right),&\quad E_-^3:\, \left(\begin{array}{l} e_1\\ e_2\\ e_3\\ e_4 \end{array}\right) \mapsto \left(\begin{array}{l} e_2\\ -e_1\\ e_4\\ -e_3 \end{array}\right),\nonumber \end{aligned}$$
(46)

These endomorphisms satisfy

$$\begin{aligned}&E_+^1E_+^2=-E^2_+E^1_+=E^3_+,\quad (E^1_+)^2=(E^2_+)^2=-(E^3_+)^2=\mathrm{Id},\\&E_-^1E_-^2=-E^2_-E^1_-=E^3_-,\quad (E^1_-)^2=(E^2_-)^2=-(E^3_-)^2=\mathrm{Id} \end{aligned}$$

Moreover, if \(V\in {\mathbb R ^{4}}\) is an arbitrary nonzero vector, then

$$\begin{aligned} \{V,E_+^1V,E_+^2V,E_+^3V\} \end{aligned}$$

forms a positively oriented basis and

$$\begin{aligned} \{V,E_-^1V,E_-^2V,E_-^3V\} \end{aligned}$$

a negatively oriented basis of \({\mathbb R ^{4}}\). Associated to these endomorphisms are the following six symplectic \(2\)-forms:

$$\begin{aligned} \omega ^A_+:=\left\langle {E^A_+\cdot },{\cdot }\right\rangle _{~_{2,4}}\quad \text{ and}\quad \omega ^A_- :=\left\langle {E^A_-\cdot },{\cdot }\right\rangle _{~_{2,4}}\!\!,\qquad A=1,2,3 \end{aligned}$$

and we have

$$\begin{aligned} \omega ^1_+&= e_2\wedge e_3+e_4\wedge e_1,\quad \omega ^1_-=e_2\wedge e_3-e_4\wedge e_1,\\ \omega ^2_+&= e_1\wedge e_3+e_2\wedge e_4,\quad \omega ^2_-=e_1\wedge e_3-e_2\wedge e_4,\\ \omega ^3_+&= e_1\wedge e_2+e_3\wedge e_4,\quad \omega ^3_-=e_1\wedge e_2-e_3\wedge e_4. \end{aligned}$$

For any spacelike unit vector \(e\) and any two vectors \(V,W\) we have

$$\begin{aligned} \left\langle {V},{W}\right\rangle _{~_{2,4}}&= -\omega ^1_+(e,V)\omega ^1_+(e,W)-\omega ^2_+(e,V) \omega ^2_+(e,W)\nonumber \\&+\,\omega ^3_+(e,V)\omega ^3_+(e,W)+\left\langle {e},{V}\right\rangle _{~_{2,4}}\left\langle {e},{W}\right\rangle _{~_{2,4}}\nonumber \\&= -\omega ^1_-(e,V)\omega ^1_-(e,W)-\omega ^2_-(e,V)\omega ^2_-(e,W) \nonumber \\&+\,\omega ^3_-(e,V)\omega ^3_-(e,W)+\left\langle {e},{V}\right\rangle _{~_{2,4}}\left\langle {e},{W}\right\rangle _{~_{2,4}}\!\!. \end{aligned}$$
(47)

Let \(\nu _N\) denote the future directed timelike unit normal along \(\mathrm{AdS}_3\subset \mathbb R _2^4\). The orientation of \({\mathbb R ^{4}}\) induces an orientation on \(\mathrm{AdS}_3\) in the following way: We say that \(V_1,V_2,V_3\!\in \! T_q\mathrm{AdS}_3\) is positively oriented, if \(V_1,V_2,V_3,\nu _N\) represents the positive orientation of \({\mathbb R ^{4}}\).

Now let \(F:M\rightarrow \mathrm{AdS}_3\) be a spacelike immersion of an oriented surface and let \(\nu \) denote the future directed timelike unit normal of \(M\) within \(\mathrm{AdS}_3\). We will assume that the orientation of \(M\) is chosen in such a way that for any positively oriented basis \(\{e_1,e_2\}\) of \(T_pM\) the basis \(\{DF(e_1),DF(e_2),\nu \}\) represents the positive orientation of \(T_{F(p)}\mathrm{AdS}_3\).

For such an immersion let us define the six functions

$$\begin{aligned} \fancyscript{G}_+^A:M\rightarrow {\mathbb R ^{}},\quad \fancyscript{G}_+^A:=\frac{1}{\sqrt{2}}*(F^*\omega _+^A),\quad A=1,2,3 \end{aligned}$$

and

$$\begin{aligned} \fancyscript{G}_-^A:M\rightarrow {\mathbb R ^{}},\quad \fancyscript{G}_-^A:=\frac{1}{\sqrt{2}}*(F^*\omega _-^A) ,\quad A=1,2,3, \end{aligned}$$

where \(F^*\) denotes “pull-back” and \(*\) is the Hodge-Operator on forms. From Eq. (47) one immediately getsFootnote 1

$$\begin{aligned} (\fancyscript{G}_+^1)^2+(\fancyscript{G}_+^2)^2-(\fancyscript{G}_+^3)^2 =-\frac{1}{2}=(\fancyscript{G}_-^1)^2+(\fancyscript{G}_-^2)^2 -(\fancyscript{G}_-^3)^2 \end{aligned}$$
(48)

and by construction we have \(\fancyscript{G}^3_\pm >0\), so that

$$\begin{aligned} \fancyscript{G}_+=(\fancyscript{G}_+^1,\fancyscript{G}_+^2,\fancyscript{G}_+^3) \quad \text{ and}\quad \fancyscript{G}_-=(\fancyscript{G}_-^1,\fancyscript{G}_-^2,\fancyscript{G}_-^3) \end{aligned}$$

define two functions from \(M\) to \(\mathbb H _{1/\sqrt{2}}\). \(\fancyscript{G}_+,\fancyscript{G}_-\) are called the self-dual resp. the anti-self-dual Gauß maps of \(F\) and the Gauß map \(\fancyscript{G}:M\rightarrow Gr^+_2(2,4)=\mathbb H _{1/\sqrt{2}}\times \mathbb H _{1/\sqrt{2}}\) is given by the pair \(\fancyscript{G}=(\fancyscript{G}_+,\fancyscript{G}_-)\).

Let

$$\begin{aligned} \langle \cdot ,\cdot \rangle _{~_{ Gr_2^+(2,4)}},\quad \fancyscript{J}\quad \text{ and}\quad \omega =\langle \fancyscript{J}\cdot ,\cdot \rangle _{~_{ Gr_2^+(2,4)}} \end{aligned}$$

denote the Kähler metric, complex structure and Kähler form on the Grassmannian \(Gr_2^+(2,4)=\mathbb H _{1/\sqrt{2}}\times \mathbb H _{1/\sqrt{2}}\).

As was shown in [18, 19], we have \(\fancyscript{G}^*\omega =0\), i.e. the Gauß map of an immersion \(F:M\rightarrow \mathrm{AdS}_3\) defines a Lagrangian immersion \(\fancyscript{G}:M\rightarrow Gr_2^+(2,4)\).

Let

$$\begin{aligned} {\sigma }_{ij} dx^i\otimes dx^j=\fancyscript{G}^*\langle \cdot ,\cdot \rangle _{~_{ Gr_2^+(2,4)}} \end{aligned}$$

denote the Riemannian metric on \(M\) induced by the Gauß map. If \(D\) denotes the connection associated to \(\sigma \), then it is well known that the second fundamental tensor

$$\begin{aligned} {\tau }_{ijk}=\omega (D_i\fancyscript{G},D_jD_k\fancyscript{G}) \end{aligned}$$

of the Lagrangian immersion is completely symmetric and that the mean curvature form \(\tau =\tau _idx^i\) on \(M\), i.e. its trace \(\tau _i={\sigma }^{jk}{\tau }_{ijk}\) (where \(({\sigma }^{jk})_{j,k=1,2}\) denotes the inverse of \(({\sigma }_{jk})_{j,k=1,2}\)), is closed.

The first and second fundamental forms on \(M\) induced by \(F\) shall be denoted (as before) by \({g}_{ij} dx^i\otimes dx^j\) and \({h}_{ij} dx^i\otimes dx^j\). If we consider \(F\) as a map from \(M\) to \(\mathbb R _2^4\), then the Gauß formula shows that the second fundamental tensor \(\tilde{A}\) of \(M\), considered as a submanifold of codimension two in \(\mathbb R _2^4\), decomposes into

$$\begin{aligned} {\tilde{A}}_{ij}={g}_{ij}\nu _N+{h}_{ij}\nu . \end{aligned}$$
(49)

 

Lemma 12

Let \(F:M\rightarrow \mathrm{AdS}_3\) be a spacelike immersion. With the same notations as above the following relations between the first and second fundamental forms of \(F\) and \(\fancyscript{G}\) are valid:

$$\begin{aligned} {\sigma }_{ij}&= {g}_{ij}+{g}^{kl}{h}_{ik}{h}_{jl},\end{aligned}$$
(50)
$$\begin{aligned} {\tau }_{ijk}&= \nabla _i{h}_{jk}, \end{aligned}$$
(51)

where \(\nabla \) denotes the Levi-Civita connection of \({g}_{ij}\).

 

Proof

Straightforward computations using (47), (48) and (49).\(\square \)

 

In particular, we observe that \({\sigma }_{ij}\) coincides with the tensor defined earlier in Eq. (18) since in this special situation we have \(\kappa =1\). As a corollary we obtain:

 

Lemma 13

The Maslov class of the Gauß map \(\fancyscript{G}\) is trivial and the Lagrangian angle is given by \(\phi =\arctan \lambda _1+\arctan \lambda _2\), where \(\lambda _1,\lambda _2\) are the principal curvatures of \(F:M\rightarrow \mathrm{AdS}_3\).

 

Proof

We have seen in Lemma 3 that \(\phi =\arctan \lambda _1+\arctan \lambda _2\) is a smooth function. Moreover we have \(\frac{\partial \phi }{\partial {h}_{ij}}={\sigma }^{ij}\) and then

$$\begin{aligned} \nabla _k\phi&= \frac{\partial \phi }{\partial {h}_{ij}}\nabla _k{h}_{ij}+\frac{\partial \phi }{\partial {g}^{ij}}\nabla _k{g}^{ij}\\&= {\sigma }^{ij}\nabla _k{h}_{ij}\\&\overset{(51)}{=}{\sigma }^{ij}{\tau }_{kij}\\&= \tau _k. \end{aligned}$$

This means that the mean curvature form \(\tau \) of the Gauß map satisfies \(\tau =d\phi \). Since \(\tau /\pi \) represents the Maslov class, it must be trivial.\(\square \)

We will now treat the case where \(F:M\times [0,T)\rightarrow \mathrm{AdS}_3\) is a smooth family of spacelike immersions satisfying an evolution equation of the form

$$\begin{aligned} \frac{d}{dt}\,F=f\nu , \end{aligned}$$

where \(f\) is an arbitrary smooth function and \(\nu \) the future directed timelike unit normal. The Gauß maps of \(F\) depend on \(t\) and will vary in time. A straightforward computation gives the two relations

$$\begin{aligned} \left\langle \frac{d}{dt}\,\fancyscript{G},D_k\fancyscript{G}\right\rangle _{~_{ Gr_2^+(2,4)}} ={g}^{ml}{h}_{lk}\nabla _mf \end{aligned}$$

and

$$\begin{aligned} \left\langle \frac{d}{dt}\,\fancyscript{G},\fancyscript{J}D_k\fancyscript{G}\right\rangle _{~_{ Gr_2^+(2,4)}} =\nabla _kf, \end{aligned}$$

so that

$$\begin{aligned} \frac{d}{dt}\,\fancyscript{G}=\fancyscript{J}({\sigma }^{kl}\nabla _kfD_l\fancyscript{G})+{\sigma }^{kl}{g}^{ms}{h}_{sk}D_mfD_l\fancyscript{G}. \end{aligned}$$

So we have shown:

 

Lemma 14

Suppose \(F:M\times [0,T)\rightarrow \mathrm{AdS}_3\) is a smooth family of spacelike immersions driven by the flow \(\frac{d}{dt}\,F=f\nu \), where \(\nu \) denotes the future directed timelike unit normal. Then the Gauß maps \(\fancyscript{G}_F:M\times [0,T)\rightarrow Gr_2^+(2,4)\) of \(F\) evolve according to

$$\begin{aligned} \frac{d}{dt}\,\fancyscript{G}_F=\left(\fancyscript{J}\circ d\fancyscript{G}_F+d\fancyscript{G}_F\circ \fancyscript{W}_F\right)\nabla ^\sigma f. \end{aligned}$$
(52)

where\(\fancyscript{J}\) denotes the complex structure on \(Gr_2^+(2,4), \fancyscript{W}_F\) is the Weingarten map of \(F\) and \(\nabla ^\sigma f\) denotes the gradient of \(f\) w.r.t. the induced metric \(\sigma =\fancyscript{G}^*\left\langle \cdot ,\cdot \right\rangle _{~_{ Gr_2^+(2,4)}}\).

In particular, if we choose for \(f\) the Lagrangian angle \(\phi =\arctan \lambda _1+\arctan \lambda _2\), then—up to the tangential term \((d\fancyscript{G}_F\circ \fancyscript{W}_F)\nabla ^\sigma f\), which is of no interest concerning the geometric evolution—the Gauß maps evolve by the Lagrangian mean curvature flow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smoczyk, K. Evolution of spacelike surfaces in \(\mathrm{AdS}_3\) by their Lagrangian angle. Math. Ann. 355, 1443–1468 (2013). https://doi.org/10.1007/s00208-012-0827-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0827-8

Mathematics Subject Classification (2000)

Navigation