Skip to main content
Log in

Obtaining the exact and near-exact distributions of the likelihood ratio statistic to test circular symmetry through the use of characteristic functions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper the authors show how through the use of the characteristic function of the negative logarithm of the likelihood ratio test (l.r.t.) statistic to test circular symmetry it is possible to obtain highly manageable expressions for the exact distribution of such statistic, when the number of variables, \(p\), is odd, and highly manageable and accurate approximations for an even \(p\). For the case of an even \(p\), two kinds of near-exact distributions are developed for the l.r.t. statistic which correspond, for the logarithm of the l.r.t. statistic, to a Generalized Near-Integer Gamma distribution or finite mixtures of these distributions. Numerical studies conducted in order to assess the quality of these new approximations show their impressive performance, namely when compared with the only available asymptotic distribution in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Arnold BC, Coelho CA, Marques FJ (2013) The distribution of the product of powers of independent Uniform random variables—a simple but useful tool to address and better understand the structure of some distributions. J Multivar Anal 113:19–36

    Google Scholar 

  • Box GEP (1949) A general distribution theory for a class of likelihood criteria. Biometrika 36:317–346

    MathSciNet  Google Scholar 

  • Coelho CA (1998) The generalized integer Gamma distribution—a basis for distributions in multivariate statistics. J Multivar Anal 64:86–102

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho CA (2004) The Generalized Near-Integer Gamma distribution: a basis for ’near-exact’ approximations to the distributions of statistics which are the product of an odd number of independent Beta random variables. J Multivar Anal 89:191–218

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho CA, Marques FJ (2010) Near-exact distributions for the independence and sphericity likelihood ratio test statistics. J Multivar Anal 101:583–593

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho CA, Marques FJ (2012) Near-exact distributions for the likelihood ratio test statistic to test equality of several variance-covariance matrices in elliptically contoured distributions. Comput Stat 27:627–659

    Google Scholar 

  • Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2:155–239

    Article  Google Scholar 

  • Khattree R (1996) Multivariate statistical inference involving circulant matrices: a review. In: Gupta AK, Girko VL (eds) Multidimensional statistical analysis and theory of random matrices. VSP, The Netherlands, pp 101–110

    Google Scholar 

  • Marques FJ, Coelho CA (2008) Near-exact distributions for the sphericity likelihood ratio test statistic. J Stat Plan Infer 138:726–741

    Google Scholar 

  • Marques FJ, Coelho CA (2011) The exact and near-exact distributions of the likelihood ratio test statistics for testing circular symmetry. Univ. Nova de Lisboa, CMA, Preprint 1/2011 (http://www.cma.fct.unl.pt/sites/www.cma.fct.unl.pt/files/documentos/publicacoes/pdf_2011/CMA%201-2011.pdf)

  • Nagar DK, Chen J, Gupta AK (2004) Distribution and percentage points of the likelihood ratio statistic for testing circular symmetry. Comput Stat Data Anal 47:79–89

    Article  MathSciNet  MATH  Google Scholar 

  • Olkin I, Press SJ (1969) Testing and estimation for a circular stationary model. Ann Math Stat 40:1358–1373

    Article  MathSciNet  MATH  Google Scholar 

  • Gil-Pelaez J (1951) Note on the inversion theorem. Biometrika 38:481–482

    MathSciNet  MATH  Google Scholar 

  • Tricomi FG, Erdélyi A (1951) The asymptotic expansion of a ratio of Gamma functions. Pac J Math 1:133–142

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by CMA/FCT/UNL, under the project PEst-OE/MAT/UI0297/2011. The authors would like also to thank the Associate Editor and a referee for a thorough revision of the manuscript and the correction of a few typos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe J. Marques.

Appendices

Appendix 1: Notation used in the expression of the l.r.t. statistic

In this Appendix we summarize the main results in Olkin and Press (1969) and establish the notation related with the l.r.t. statistic used in this paper.

Under \(H_0\) in (1), we have that \(\varvec{\Sigma }\) is circular symmetric, thus its eigenvalues are real and there exists an orthogonal matrix \(\mathbf P \), such that,

$$\begin{aligned} \varvec{\Sigma }=\mathbf{ PD} _{\lambda }\mathbf P ^{\prime } \end{aligned}$$

with \(\mathbf D _{\lambda }=diag\left(\lambda _{1},\ldots ,\lambda _{p}\right).\) The columns of the matrix \(\mathbf P =[\mathbf u _{jk}]\) are the eigenvectors of \(\varvec{\Sigma }\), corresponding to \(\lambda _{1},\ldots ,\lambda _{p},\) and may be given by

$$\begin{aligned} \mathbf u _{jk}=\frac{1}{\sqrt{p}}\left\{ \,cos\left[\frac{2\pi }{p}(j{-}1)(k{-}1)\right]\!+\!sin\left[\frac{2\pi }{p}(j-1)(k\!-\!1)\right]\right\} ,\ \ j,k=1,\ldots ,p. \end{aligned}$$

We may note that the \(\mathbf u _{jk}\) do not depend on the elements of \(\varvec{\Sigma }\), only the eigenvalues \(\lambda _1,\ldots ,\lambda _p\) do (see Olkin and Press 1969 for details).

Consider a random sample of size \(N=n+1\) from the distribution \(N_p\left(\varvec{\mu }, \varvec{\Sigma } \right)\) and let \(\mathbf X _{N\times p}\) be the sample matrix. Let \(\mathbf E _{N1}\) be an \({N\times 1}\) unitary vector. Let

$$\begin{aligned} \overline{\mathbf{X }}=\left[\overline{\mathbf{X }}_{1}\ldots \overline{\mathbf{X }}_{p}\right]=\frac{1}{N}\mathbf X ^{\prime }\mathbf E _{N1} \end{aligned}$$

be the vector of sample means, and

$$\begin{aligned} \mathbf S =\left(\mathbf X -\mathbf E _{N1}\overline{\mathbf{X }}^{\prime }\right)^{\prime }\left(\mathbf X -\mathbf E _{N1}\overline{\mathbf{X }}^{\prime }\right)\,. \end{aligned}$$

Let us take \(\mathbf{y =\frac{1}{\sqrt{N}}\overline{\mathbf{X }}\mathbf P }\) and \(\mathbf{V =\mathbf P ^{\prime }\mathbf SP }\). Then, \(\mathbf y \) and \(\mathbf V =[v_{ij}]\) are independently distributed with

$$\begin{aligned} \mathbf y \sim N_p\left(\frac{1}{\sqrt{N}}\,\varvec{\mu }\,\mathbf P ,\overline{\varvec{\Sigma }}\right)\ \ \ \ \ \ \ \ \ \ \ \mathbf V \sim W_{p}\left(N-1,\overline{\varvec{\Sigma }}\right) \end{aligned}$$
(32)

where \(\overline{\varvec{\Sigma }}=\mathbf P ^{\prime }\varvec{\Sigma }\mathbf P .\) If \(\varvec{\Sigma }\) is circular then

$$\begin{aligned} \overline{\varvec{\Sigma }}=\mathbf D _{\lambda }=diag\left(\lambda _{1},\ldots ,\lambda _{p}\right),\ \ \lambda _{j}=\lambda _{p-j+2}\,\quad j=2,\ldots ,p\,. \end{aligned}$$

We then define, for even \(p\),

$$\begin{aligned} v_{j}=\left\{ \begin{array}{lll} v_{jj},&~~&j=1 \text{ or} j=m+1 \\ v_{jj}+v_{p-j+2,p-j+2},&\,&j=2,\ldots ,m, \end{array} \right. \end{aligned}$$
(33)

while for odd \(p\),

$$\begin{aligned} v_{j}=\left\{ \begin{array}{lll} v_{jj},&~~&j=1 \\ v_{jj}+v_{p-j+2,p-j+2},&\,&j=2,\ldots ,m+1, \end{array} \right. \end{aligned}$$
(34)

with \({v_{p-j+2}=v_j}\) for \({(j=2,\ldots ,p)}\).

Appendix 2: Proof of theorems 1, 2 and 3

1.1 Proof of Theorem 1

Proof

From the expression of the c.f. of \(W\) in (5) and considering that for an odd \(p\) we have \(m=\left\lfloor \frac{p}{2}\right\rfloor =\frac{p-1}{2}\), we may write the c.f. of \(W\) as

$$\begin{aligned} \nonumber \varPhi _{W}(t)&= \left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p-1}{2}}\times \prod ^{p-1}_{j=1}\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\\ \nonumber&= \left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p-1}{2}}\times \mathop {\prod ^{p-2}_{j=1}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j+1}{2}-\mathrm{i}t\right)}\\ \nonumber&\times \mathop {\prod ^{p-1}_{j=2}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}-\mathrm{i}t\right)}\mathop {\prod ^{p-1}_{j=2}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\\ \nonumber&= \left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p-1}{2}}\times \mathop {\prod ^{p-2}_{j=1}}_{\text{ step} 2}\prod _{k=0}^{\frac{j+1}{2}-1}\left(\frac{N-j-1}{2}+k\right)\left(\frac{N-j-1}{2}+k-\mathrm{i}t\right)^{-1}\\ \nonumber&\times \mathop {\prod ^{p-1}_{j=2}}_{\text{ step} 2}\prod _{k=0}^{\frac{j}{2}-1}\left(\frac{N-j-1}{2}+k\right)\left(\frac{N-j-1}{2}+k-\mathrm{i}t\right)^{-1}\left(\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-\frac{1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{1}{2}\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\right)^{\frac{p-1}{2}} \end{aligned}$$

noticing that

$$\begin{aligned} \left\lfloor \frac{j+1}{2} \right\rfloor =\displaystyle \left\{ \begin{array}{ll} \frac{j+1}{2}&\quad \text{ if} j \text{ is} \text{ odd}\\ \frac{j}{2}&\quad \text{ if} j \text{ is} \text{ even} \end{array} \right. \end{aligned}$$
(35)

we may write

$$\begin{aligned} \varPhi _{W}(t)&= \prod ^{p-1}_{j=1}\prod _{k=0}^{\left\lfloor \frac{j+1}{2}-1\right\rfloor }\left(\frac{N-j-1}{2}+k\right)\left(\frac{N-j-1}{2}+k-\mathrm{i}t\right)^{-1}\end{aligned}$$
(36)
$$\begin{aligned}&= \prod ^{p}_{j=2}\left(\frac{N}{2}-\frac{j}{2}\right)^{1+\left\lfloor \frac{p-j}{2}\right\rfloor }\left(\frac{N}{2}-\frac{j}{2}-\mathrm{i}t\right)^{-1-\left\lfloor \frac{p-j}{2}\right\rfloor }\,. \end{aligned}$$
(37)

Since the c.f. in (36) corresponds to the c.f. of the sum of independent Exponential r.v.’s, counting the number of Exponential distributions with the same rate parameter we obtain the representation in (37) for the c.f. of \(W\). \(\square \)

1.2 Proof of Theorem 2

Proof

When the number of variables, \(p\), is even we have that \(m=\left\lfloor \frac{p}{2}\right\rfloor =\frac{p}{2}\), and then we may rewrite the c.f. of \(W\) in (5) in the form

$$\begin{aligned} \nonumber \varPhi _{W}(t)=\left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p}{2}}\times \prod ^{p-1}_{j=1}\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}, \end{aligned}$$

or,

$$\begin{aligned} \nonumber \varPhi _{W}(t)&= \left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p}{2}}\\ \nonumber&\times \left\{ \mathop {\prod ^{p-1}_{j=3}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j+1}{2}-\mathrm{i}t\right)}\right\} \times \frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-1-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-1\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\\ \nonumber&\times \mathop {\prod ^{p-2}_{j=2}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}-\mathrm{i}t\right)}\mathop {\prod ^{p-2}_{j=2}}_{\text{ step} 2}\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-\frac{j+1}{2}+\frac{j}{2}\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\\ \nonumber&= \left(\frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}- \mathrm{i}t\right)}{\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)\Gamma \left(\frac{N}{2}\right)}\right)^{\frac{p}{2}}\\ \nonumber&\times \left\{ \mathop {\prod ^{p-1}_{j=3}}_{\text{ step} 2}\prod _{k=0}^{\frac{j+1}{2}-1}\left(\frac{N-j-1}{2}+k\right)\left(\frac{N-j-1}{2}+k-\mathrm{i}t\right)^{-1}\right\} \times \frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}-1-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-1\right)\Gamma \left(\frac{N}{2}-\mathrm{i}t\right)}\\ \nonumber&\times \left\{ \mathop {\prod ^{p-2}_{j=2}}_{\text{ step} 2}\prod _{k=0}^{\frac{j}{2}-1}\left(\frac{N-j-1}{2}\!+\!k\right)\left(\frac{N-j-1}{2}\!+\!k-\mathrm{i}t\right)^{-1}\right\} \left(\frac{\Gamma \left(\frac{N}{2}\right)\Gamma \left(\frac{N}{2}\!-\!\frac{1}{2}\!-\!\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}\!-\!\frac{1}{2}\right)\Gamma \left(\frac{N}{2}\!-\!\mathrm{i}t\right)}\!\right)^{\!\frac{p-2}{2}}, \end{aligned}$$

which, after some simplifications and using the equality in (35), may be written as

$$\begin{aligned} \nonumber \varPhi _{W}(t)&= \prod ^{p-1}_{j=2}\prod _{k=0}^{\left\lfloor \frac{j+1}{2}-1\right\rfloor }\left(\frac{N-j-1}{2}+k\right)\left(\frac{N-j-1}{2}+k-\mathrm{i}t\right)^{-1}\\ \nonumber&\times \frac{\Gamma \left(\frac{N-1}{2}\right)\Gamma \left(\frac{N}{2}-1-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}-1\right)\Gamma \left(\frac{N-1}{2}-\mathrm{i}t\right)}\nonumber \\&= \underbrace{\prod ^{p}_{j{=}2}\theta _{j}^{r_{j}^*}\left(\theta _{j}-\mathrm{i}t\right)^{-r_{j}^*}}_{\varPhi _{W_{1}}(t)}{\times }\underbrace{\frac{\Gamma \left(\frac{N{-}1}{2}\right)\Gamma \left(\frac{N}{2}-1-\mathrm{i}t\right)}{\Gamma \left(\frac{N}{2}{-}1\right)\Gamma \left(\frac{N-1}{2}{-}\mathrm{i}t\right)}}_{\varPhi _{W_{2}}(t)}\, \end{aligned}$$

with \(r_{j}^*\) and \(\theta _{j}\) given in (11) and (7). \(\square \)

1.3 Proof of Theorem 3

Proof

In this proof we will consider only the case of \(h=6\), since the cases \(h=2\) and \(h=4\) are derived in a similar way.

If in the c.f. of \(W\) given in (10) we replace \(\varPhi _{W_{2}}(t)\) by

$$\begin{aligned} \varPhi _{M_G}(t)=\sum ^{3}_{k=1} \omega _k\,\lambda ^{s_k}\,(\lambda -\mathrm{i}t)^{-s_k}\,, \end{aligned}$$

we obtain

$$\begin{aligned} \nonumber \varPhi _{W}(t)&\approx \varPhi _{W_{1}}(t)\times \underbrace{\sum ^{3}_{k=1} \omega _k\,\lambda ^{s_k}\,(\lambda -\mathrm{i}t)^{-s_k}}_{\varPhi ^*_{3}(t)}\\ \nonumber&\approx \sum ^{3}_{k=1} \omega _k\, \underbrace{\underbrace{\varPhi _{W_{1}}(t)}_{\text{ GIG} \text{ distribution}}\times \,\underbrace{\lambda ^{s_k}\,(\lambda -\mathrm{i}t)^{-s_k}}_{\text{ Gamma} \text{ distribution}}}_{\text{ GNIG} \text{ distribution}} \end{aligned}$$

that is the c.f. of the mixture of three GNIG distributions of depth \(p\) with cdf’s and pdf’s given in (24) and (23). The parameters \(\,p_{\nu }\), \(s_{\nu }\) and \(\lambda \) are defined in such a way that

$$\begin{aligned} \left.\frac{d^j}{dt^j}\,\varPhi _{M_G}(t)\right|_{t=0}=\left.\frac{d^j}{dt^j}\,\varPhi _{W_{2}}(t)\right|_{t=0}\,,~~~~j=1,\ldots ,6\,, \end{aligned}$$

what gives rise to a near-exact distribution that matches the first six exact moments of \(W\). By simple transformation it’s easy to derive the near-exact c.d.f’s and pdf’s for \(\Lambda ^{2/N}\). \(\square \)

Appendix 3: The Gamma, Generalized Integer Gamma (GIG) and Generalized Near-Integer Gamma (GNIG) distributions

We will use this Appendix to establish some notation concerning distributions used in the paper, as well as to give the expressions for the pdf’s and cdf’s of the GIG and GNIG distributions.

We will say that the r.v. \(X\) has a Gamma distribution with rate parameter \(\lambda >0\) and shape parameter \(r>0\), if its pdf may be written as

$$\begin{aligned} f^{}_X(x)=\frac{\lambda ^r}{\Gamma (r)}\,e^{-\lambda x}\,x^{r-1}\,,~~~~(x>0) \end{aligned}$$

and we will denote this fact by

$$\begin{aligned} X\sim \Gamma (r,\lambda )\,. \end{aligned}$$

Let

$$\begin{aligned} X_j\,\sim \,\Gamma (r_j,\lambda _j)~~~~~j=1,\ldots ,p \end{aligned}$$

be \(p\) independent r.v.’s with Gamma distributions with shape parameters \(r_j\in I\!\!N\) and rate parameters \(\lambda _j>0\), with \(\lambda _j\ne \lambda _{j^{\prime }}\), for all \(j,j^{\prime }\in \{1,\ldots ,p\}\). We will say that then the r.v.

$$\begin{aligned} Y\,=\,\sum ^p_{j=1}X_j \end{aligned}$$

has a GIG distribution of depth \(p\), with shape parameters \(r_j\) and rate parameters \(\lambda _j\), \((j=1,\ldots ,p)\), and we will denote this fact by

$$\begin{aligned} Y\,\sim \,GIG(r_j,\lambda _j;\,p)\,. \end{aligned}$$

The pdf and cdf of \(Y\) are respectively given by (Coelho 1998)

$$\begin{aligned} f^{\scriptscriptstyle GIG}(y|r_1,\ldots ,r_p;\lambda _1,\ldots ,\lambda _p;p)\,=\,K\sum ^p_{j=1}P_j(y)\,e^{-\lambda _j\,y}\,,~~~~(y>0) \end{aligned}$$
(38)

and

$$\begin{aligned} F^{\scriptscriptstyle GIG}(y|r_1,\ldots ,r_j;\lambda _1,\ldots ,\lambda _p;p)\,=\,1-K\sum ^p_{j=1}P^*_j(y)\,e^{-\lambda _j\,y}\,,~~~~(y>0)\qquad \end{aligned}$$
(39)

where \(K\) is given by (5) in Coelho (1998), and \(P_j(y)\) and \(P_j^*(y)\) are given by (7) and (16) in the same reference.

The GNIG distribution of depth \(p+1\) (see Coelho 2004) is the distribution of the r.v.

$$\begin{aligned} Z=Y_1+Y_2 \end{aligned}$$

where \(Y_1\) and \(Y_2\) are independent, \(Y_1\) having a GIG distribution of depth \(p\) and \(Y_2\) with a Gamma distribution with a non-integer shape parameter \(r\) and rate parameter \(\lambda \ne \lambda _j\) \((j=1,\ldots ,p)\). The pdf of \(Z\) is given by

$$\begin{aligned} \begin{array}{l} \displaystyle \!\!\!\!\!\!\!\!\! f^{\scriptscriptstyle GNIG} (z|r_1,\ldots ,r_p,r;\,\lambda _1,\ldots ,\lambda _p,\lambda ;p+1) =\\ \!\!\!\displaystyle K\lambda ^r \sum \limits _{j = 1}^p {e^{ - \lambda _j z} } \sum \limits _{k = 1}^{r_j } {\left\{ {c_{j,k} \frac{{\Gamma (k)}}{{\Gamma (k\!+\!r)}}z^{k + r - 1} {}_1F_1 (r,k\!+\!r, - (\lambda \!-\!\lambda _j )z)} \right\} }\,, (z > 0) \end{array} \end{aligned}$$
(40)

and the cdf given by

$$\begin{aligned}&\!\!\!\!\!\!\!\!\!\!\!\! \displaystyle F^{\scriptscriptstyle GNIG} (z|r_1,\ldots ,r_p,r;\,\lambda _1,\ldots ,\lambda _p,\lambda ;p\!+\!1) = \frac{\lambda ^r \,{z^r }}{{\Gamma (r\!+\!1)}}{}_1F_1 (r,r\!+\!1, - \lambda z)\nonumber \\&\!\!\!\!\!\! \displaystyle - K\lambda ^r \sum \limits _{j = 1}^p {e^{ - \lambda _j z} } \sum \limits _{k = 1}^{r_j } {c_{j,k}^* } \sum \limits _{i = 0}^{k - 1} {\frac{{z^{r + i} \lambda _j^i }}{{\Gamma (r\!+\!1\!+\!i)}}} {}_1F_1 (r,r\!+\!1\!+\!i, - (\lambda - \lambda _j )z), (z>0)\nonumber \\ \end{aligned}$$
(41)

where

$$\begin{aligned} c_{j,k}^* = \frac{{c_{j,k} }}{{\lambda _j^k }}\Gamma (k) \end{aligned}$$

with \(c_{j,k}\) given by (11) through (13) in Coelho (1998). In the above expressions \(_1F_1(a,b;z)\) is the Kummer confluent hypergeometric function. This function typically has very good convergence properties and is nowadays easily handled by a number of software packages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, F.J., Coelho, C.A. Obtaining the exact and near-exact distributions of the likelihood ratio statistic to test circular symmetry through the use of characteristic functions. Comput Stat 28, 2091–2115 (2013). https://doi.org/10.1007/s00180-013-0398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0398-5

Keywords

Navigation