Skip to main content
Log in

Nonextensive thermodynamic relations based on the assumption of temperature duality

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The nonextensive thermodynamic relations are expressed under the assumption of temperature duality, endowing the “physical temperature” and the “Lagrange temperature” in different physical senses. Based on this assumption, two sets of parallel Legendre transform structures are given. One is called “physical” set, and the other is called “Lagrange” set. In these two formalisms, the thermodynamic quantities and the thermodynamic relations are both liked through the Tsallis factor. Application of the two sets of the thermodynamic relations to the self-gravitating system shows that the heat capacity defined in the classical thermodynamics has no relevance to the stability of the system. Instead, the newly defined heat capacity can determine the stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Liu, Z.P., Liu, L.Y., Du, J.L.: A nonextensive approach for the instability of current-driven ion-acoustic waves in space plasmas. Phys. Plasmas 16, 072111 (2009)

  3. Du, J.L.: Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262 (2004)

    Article  ADS  MATH  Google Scholar 

  4. Liu, L.Y., Du, J.L.: Ion acoustic waves in the plasma with the power-law \(q\)-distribution in nonextensive statistics. Physica A 387, 4821 (2008)

  5. Yu, H.N., Du, J.L.: The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field. Ann. Phys. 350, 302 (2014) and the references therein

  6. Du, J.L.: The nonextensive parameter and Tsallis distribution for self-gravitating systems. Europhys. Lett. 67, 893 (2004)

    Article  Google Scholar 

  7. Leubner, M.P.: Nonextensive theory of dark matter and gas density profiles. Astrophys. J. 632, L1 (2005)

    Article  ADS  Google Scholar 

  8. Du, J.L.: The Chandrasekhar’s condition of the equilibrium and stability for a star in the nonextensive kinetic theory. New Astron. 12, 60 (2006)

    Article  ADS  Google Scholar 

  9. Du, J.L.: Nonextensivity and the power-law distributions for the systems with self-gravitating long-range interactions. Astrophys. Space Sci. 312, 47 (2007) and the references therein

  10. Liu, B., Goree, J.: Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  11. Guo, R., Du, J.L.: The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion. Ann. Phys. 359, 187 (2015)

  12. Oikonomou, T., Provata, A., Tirnakli, U.: Nonextensive statistical approach to non-coding human DNA. Physica A 387, 2653 (2008)

    Article  ADS  Google Scholar 

  13. Rolinski, O.J., Martin, A., Birch, D.J.S.: Human serum albumin-flavonoid interactions monitored by means of tryptophan kinetics. Ann. N. Y. Acad. Sci. 1130, 314 (2008)

    Article  ADS  Google Scholar 

  14. Eftaxias, K., Minadakis, G., Potirakis, S.M., Balasis, G.: Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics. Physica A 392, 497 (2013)

    Article  ADS  Google Scholar 

  15. Anteneodo, C., Tsallis, C., Martinez, A.S.: Risk aversion in economic transactions. Europhys. Lett. 59, 635 (2002)

    Article  ADS  Google Scholar 

  16. Yamano, T.: Distribution of the Japanese posted land price and the generalized entropy. Eur. Phys. J. B 38, 665 (2004)

    Article  ADS  Google Scholar 

  17. Du, J.L.: Property of Tsallis entropy and principle of entropy increase. Bull. Astr. Soc. India 35, 691 (2007)

    ADS  Google Scholar 

  18. Guo, L.N., Du, J.L.: Heat capacity of the generalized two-atom and many-atom gas in nonextensive statistics. Physica A 388, 4936 (2009)

    Article  ADS  Google Scholar 

  19. Guo, L.N., Du, J.L.: Thermodynamic potentials and thermodynamic relations in nonextensive thermodynamics. Physica A 390, 183 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Abe, S., Martınez, S., Pennini, F., Plastino, A.: Nonextensive thermodynamic relations. Phys. Lett. A 281, 126 (2001)

    Article  ADS  MATH  Google Scholar 

  21. Zheng, Y.H.: An insight to the nonextensive parameter in the actual gas. Physica A 392, 2487 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zheng, Y.H., Du, J.L.: The equivalence of isothermal and non-isothermal power law distributions with temperature duality. Physica A 427, 113 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Martınez, S., Nicolás, F., Pennini, F., Plastino, A.: Tsallis’ entropy maximization procedure revisited. Physica A 286, 489 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Abe, S.: Correlation induced by Tsallis’ nonextensivity. Physica A 269(2), 403–409 (1999)

    Article  ADS  Google Scholar 

  25. Abe, S.: General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. Phys. Rev. E 63, 061105 (2001)

    Article  ADS  Google Scholar 

  26. Martınez, S., Pennini, F., Plastino, A.: Thermodynamics’ zeroth law in a nonextensive scenario. Physica A 295, 416 (2001)

    Article  ADS  MATH  Google Scholar 

  27. Johal, R.S.: Additive entropy underlying the general composable entropy prescribed by thermodynamic meta-equilibrium. Phys. Lett. A 318, 48 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Johal, R.S.: Composable entropy and deviation from macroscopic equilibrium. Phys. Lett. A 332, 345 (2004)

    Article  ADS  MATH  Google Scholar 

  29. Ou, C., Chen, J.: Two long-standing problems in Tsallis’ statistics. Physica A 370, 525 (2006)

    Article  ADS  Google Scholar 

  30. Scarfone, A.M.: Intensive variables in the framework of the non-extensive thermostatistics. Phys. Lett. A 374, 2701 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Nauenberg, M.: Critique of q-entropy for thermal statistics. Phys. Rev. E 67, 036114 (2003)

    Article  ADS  Google Scholar 

  32. Zheng, Y., Du, J.L.: Two physical explanations of the nonextensive parameter in a self-gravitating system. EPL 107, 60001 (2014)

    Article  ADS  Google Scholar 

  33. Lima, J.A.S., Silva, R., Plastino, A.R.: Nonextensive thermostatistics and the H theorem. Phys. Rev. Lett. 86, 2938 (2001)

    Article  ADS  Google Scholar 

  34. Wang, Q.A.: Nonextensive statistics and incomplete information. Eur. Phys. J. B 26, 357 (2002)

    ADS  Google Scholar 

  35. Wang, Q.A., Méhauté, A.L.: Unnormalized nonextensive expectation value and zeroth law of thermodynamics. Chaos Solitons Fractals 15, 537 (2003)

    Article  ADS  MATH  Google Scholar 

  36. Scarfone, A.M.: Intensive variables in the framework of the non-extensive thermostatistics. Phys. Lett. A 374, 2701 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Biró, T.S., Ván, P.: Zeroth law compatibility of nonadditive thermodynamics. Phys. Rev. E 83, 061147 (2011)

    Article  ADS  Google Scholar 

  38. Abe, S.: Temperature of nonextensive systems: Tsallis entropy as Clausius entropy. Physica A 368, 430 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  40. Lima, J.A.S., Silva, R.: The nonextensive gas: a kinetic approach. Phys. Lett. A 338, 272 (2005)

    Article  ADS  MATH  Google Scholar 

  41. Zheng, Y.H., Du, J.L.: An application of nonextensive parameter: the nonextensive gas and real gas. Int. J. Mod. Phys. B 21, 947 (2007)

    Article  ADS  MATH  Google Scholar 

  42. Zheng, Y.H., Du, J.L.: The stationary state and gravitational temperature in a pure self-gravitating system. Physica A 420, 41 (2015)

  43. Collins, G.W.: The Virial Theorem in Stellar Astrophysics. Pachart Publishing House, Tucson (1978)

  44. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  45. Zheng, Y.H., Du, J.L.: The gravitational heat conduction and the hierarchical structure in solar interior. EPL 105, 54002 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiulin Du.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Du, J. Nonextensive thermodynamic relations based on the assumption of temperature duality. Continuum Mech. Thermodyn. 28, 1791–1805 (2016). https://doi.org/10.1007/s00161-016-0510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0510-5

Keywords

Navigation