Skip to main content
Log in

The Lagrangian View-Point Compared with the Eulerian One, in the Framework of Extended Thermodynamics

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The salient points of Extended Thermodynamics are here revised according to the Lagrangian view-point. The conservation laws of mass, momentum and energy, from the Lagrangian view-point, have already been treated in literature. Here a similar procedure is followed for all the balance laws of Extended Thermodynamics with an arbitrary number of moments. It is also shown how the Galilean Relativity Principle and some symmetry condition, which are present in the Eulerian view-point, can be “translated” in the Lagrangian view-point, where they are no more so self-evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, I.-S., Müller, I.: Extended thermodynamics of classical and degenerate ideal gases. Arch. Ration. Mech. Anal. 83, 285–332 (1983)

    Article  MATH  Google Scholar 

  2. Liu, I.S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. (N.Y.) 169, 191–219 (1986)

    Article  Google Scholar 

  3. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer Tracts in Natural Philosophy. Springer, New York (1998)

    Book  MATH  Google Scholar 

  4. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271–292 (2011)

    Article  Google Scholar 

  5. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013)

    Article  MathSciNet  Google Scholar 

  6. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)

    Article  MathSciNet  Google Scholar 

  7. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended thermodynamics. Meccanica (2014). doi:10.1007/s11012-014-9886-0

    MathSciNet  Google Scholar 

  8. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  Google Scholar 

  9. Meixner, J.: Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren komponenten. I. Teil. Ann. Phys. 43, 470–487 (1943)

    Article  MathSciNet  Google Scholar 

  10. Meixner, J.: Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung der transporterscheinungen. Acoustica 2, 101–109 (1952)

    MathSciNet  Google Scholar 

  11. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727–737 (2013)

    Article  MathSciNet  Google Scholar 

  12. Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended thermodynamics. In: Proceedings of the 34th Symposium on Ultrasonic Electronics, pp. 15–16 (2013)

    Google Scholar 

  13. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  14. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302–1317 (2013)

    Article  MathSciNet  Google Scholar 

  15. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  Google Scholar 

  16. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B, Fluids 13, 237–254 (1994)

    MATH  Google Scholar 

  17. Trovato, M., Reggiani, L.: Quantum maximum entropy principle for a system of identical particles. Phys. Rev. E 81, 021119 (2010)

    Article  Google Scholar 

  18. Trovato, M., Reggiani, L.: Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism. Phys. Rev. E 84, 061147 (2011)

    Article  Google Scholar 

  19. Trovato, M., Reggiani, L.: Maximum entropy principle and hydrodynamic models in statistical mechanics. Riv. Nuovo Cimento Soc. Ital. Fis. 35, 99–266 (2012)

    Google Scholar 

  20. Trovato, M., Reggiani, L.: Quantum maximum entropy principle for fractional exclusion statistics. Phys. Rev. Lett. 110, 020404 (2013)

    Article  Google Scholar 

  21. Ruggeri, T.: Introduzione alla Termomeccanica dei Continui. II Edizione Riveduta e Corretta. Monduzzi Editore, Bologna (2013)

    Google Scholar 

  22. Borghero, F., Demontis, F., Pennisi, S.: The non-relativistic limit of relativistic extended thermodynamics with many moments. Part I: The balance equations. In: Proceedings of Wascom 2005, pp. 47–52. World Scientific, Singapore (2005)

    Google Scholar 

  23. Carrisi, M.C., Demontis, F., Pennisi, S.: The non-relativistic limit of relativistic extended thermodynamics with many moments. Part II: How it includes the mass, momentum and energy conservation. In: Proceedings of Wascom 2005, pp. 95–100. World Scientific, Singapore (2005)

    Google Scholar 

  24. Dreyer, W., Weiss, W.: The classical limit of relativistic extended thermodynamics. Ann. Inst. Henri Poincaré 45, 401–418 (1986)

    MATH  MathSciNet  Google Scholar 

  25. Montisci, S., Pennisi, S.: Some useful tensorial identities for extended thermodynamics. IEJPAM 6(4), 167–215 (2013)

    MathSciNet  Google Scholar 

  26. Pennisi, S., Ruggeri, T.: A new method to exploit the entropy principle and Galilean invariance in the macroscopic approach of extended thermodynamics. Ric. Mat. 55, 319–339 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MATH  Google Scholar 

  28. Carrisi, M.C., Mele, M.A., Pennisi, S.: An extended model for dense gases and macromolecular fluids, obtained without using Taylor’s expansions. Int. J. Pure Appl. Math. 57, 27–55 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Carrisi, M.C., Montisci, S., Pennisi, S.: Entropy principle and Galilean relativity for dense gases, the general solution without approximations. Entropy 15, 1035–1056 (2013)

    Article  MathSciNet  Google Scholar 

  30. Carrisi, M.C.: A generalized kinetic approach for the study of relativistic electron beams. Acta Appl. Math. 122, 107–116 (2012)

    MATH  MathSciNet  Google Scholar 

  31. Carrisi, M.C., Mignemi, S.: Snyder-de Sitter model from two-time physics. Phys. Rev. D 82, 105031 (2010)

    Article  Google Scholar 

  32. Marras, M., Vernier-Piro, S.: Blow up and decay bounds in quasilinear parabolic problems. In: Dynamical System and Diff. Equ. (DCDS), Supplement, pp. 704–712 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Pennisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrisi, M.C., Pennisi, S. & Ruggeri, T. The Lagrangian View-Point Compared with the Eulerian One, in the Framework of Extended Thermodynamics. Acta Appl Math 132, 199–212 (2014). https://doi.org/10.1007/s10440-014-9921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9921-0

Keywords

Navigation