Skip to main content

Advertisement

Log in

Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The structure and organization of the 5S ribosomal DNA units of the silver fir, Abies alba Mill., as well as their position in the chromosome complement were investigated. PCR amplification of the gene and nontranscribed spacer region, sequence analysis and Southern hybridization, using a homologous probe, detected DNA sequences of approximately 550 bp and 700 bp. Sequence analysis of the spacers revealed that the difference in length between the sequences occurred in the middle spacer region as a result of the amplification of a 75-bp sequence of the short unit class, which is organized in four 54- to 68-bp tandem repeats in the long spacer unit. The 5S rDNA transcribed region is 120 bp long and shows high sequence similarity with other gymnosperm species. The comparative analysis of 5′ and 3′ flanking sequences of 5S rRNA genes of silver fir and other gymnosperms indicates that A. alba spacer units have the same rate of evolution and are more closely related to Larix and Pseudotsuga than to Pinus and Picea. Southern hybridization and fluorescence in situ hybridization of metaphase chromosomes of A. alba suggest that the short and long spacer units are organized as separate tandem arrays at two chromosomal loci on chromosomes V and XI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amarasinghe V, Carlson JE (1998) Physical mapping and characterization of 5S rRNA genes in Douglas-fir. J Hered 89:495–500

    Article  Google Scholar 

  • Basten CJ, Ohta T (1992) Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. Genetics 132:247–252

    Google Scholar 

  • Brown GR, Carlson JE (1997) Molecular cytogenetics of the genes encoding 18S–5.8S–26S rRNA and 5S rRNA in two species of spruce (Picea). Theor Appl Genet 95:1–9

    Google Scholar 

  • Campell BR, Song Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228

    Article  CAS  PubMed  Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705

    CAS  PubMed  Google Scholar 

  • Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 86:289–296

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Farjon A (1990) Pinaceae. Koelltz Scientific, Königstein, p 340

    Google Scholar 

  • Fulnaček J, Lim KY, Leitch AR, Kovařik A, Matyášek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19–25

    Article  Google Scholar 

  • Gorman SW, Teasdale RD, Cullis CA (1992) Structure and organization of the 5S rRNA genes (5S DNA) in Pinus radiata (Pinaceae). Plant Syst Evol 183:223–234

    Google Scholar 

  • Gottlob-McHugh SG, Lévesque M, MakKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494

    CAS  PubMed  Google Scholar 

  • Hayes JJ, Tullius TD (1992) Structure of the TF-IIIA-5S DNA complex. J Mol Biol 227:407–417

    Article  Google Scholar 

  • Hizume M, Shibata F, Kondo K, Hoshi Y, Kondo T, Ge S, Yang QE, Hong DY (1999) Identification of chromosomes in two Chinese spruce species by multicolor fluorescence in situ hybridization. Chrom Sci 3:37–41

    Google Scholar 

  • Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82:820–823

    Google Scholar 

  • Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Nat Acad Sci USA 99:14590–14594

    Article  Google Scholar 

  • Liu T-S (1971) A monograph of the genus Abies. National Taiwan University, Taipei, p 608

    Google Scholar 

  • Liu Z-L, Zhang D, Hong D-Y, Wang X-R (2003a) Chromosomal localization of 5S and 18S–25S ribosomal DNA sites in five Asian pines using fluorescent in situ hybridization. Theor Appl Genet 106:198–204

    Google Scholar 

  • Liu Z-L, Zhang D, Wang X-Q, Ma X-F, Wang X-R (2003b) Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Am J Bot 90(1):17–24

    Google Scholar 

  • Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of tree Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416

    Article  Google Scholar 

  • Mashkova TD, Barciszewska MZ, Joachimiak A, Nalaskowska M, Barciszewski J (1990) Molecular evolution of plants as deduced from changes in free energy of 5S ribosomal RNAs. Int J Biol Macromol 12:247–250

    Article  Google Scholar 

  • Melekhovets YF, Troitsky AV, Valiejo-Roman KM, Bobrova VK, Antonov AS (1988) Nucleotide sequences of cytosolic 5S ribosomal RNAs from two gymnosperms, Gnetum gnemon and Ephedra kokanica. Nucleic Acid Res 16:4155

    Google Scholar 

  • Moran GF, Smith D, Bell JC, Appels R (1992) The 5S RNA genes in Pinus radiata and the spacer region as a probe for relationships between Pinus species. Plant Syst Evol 183:209–221

    Google Scholar 

  • Rushforth KD (1987) Conifers. Facts on File, New York, p 232

  • Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5S DNA. Plant Syst Evol 183:169–181

    Google Scholar 

  • Schlötterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Bios Scientific, Oxford, p 203

  • Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated space regions of the Triticae. Plant Syst Evol 160:105–122

    Article  Google Scholar 

  • Shibata F, Hizume M (2002) Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105:167–172

    Article  Google Scholar 

  • Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldoš V, Jelenić S, Papeš D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512

    Article  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Doyle JJ (1998) Molecular systematics of plants: DNA sequencing. Kluwer, Boston, p 574

    Google Scholar 

  • Swofford DL (1998) PAUP. Phylogenetic analysis using parsimony (*and or other methods). Version 4.0. Sinauer, Sunderland

  • Szymanski M, Specht T, Barciszewska MZ, Barciszewski J, Erdmann VA (1998) 5S rRNA data bank. Nucleic Acid Res 26:156–159

    Article  Google Scholar 

  • Toress-Ruiz RA, Hemleben V (1994) Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol Biol 26:1167–1179

    Article  Google Scholar 

  • Trontin J-F, Grandemange C, Favre J-M (1999) Two highly divergent 5S rDNA unite size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr]. Genome 42:837–848

    Article  Google Scholar 

  • Van de Peer Y, De Baere R, Cauwenbergh J, De Watcher R (1990) Evolution of green plants and their relationship with other photosynthetic eukaryotes as deduced from 5S ribosomal RNA sequences. Plant Syst Evol 170:85–96

    Google Scholar 

  • Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126

    Article  Google Scholar 

  • Vidaković M (1982) Četinjače. Sveučilišna naklada Liber, Zagreb, p 710

    Google Scholar 

  • Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V (1999) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol Biol Evol 16:311–320

    Google Scholar 

  • Wang X-Q, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773–781

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Gradečki from the Forestry Research Institute ‘Jasrebarsko’ for preparing the plant material used in the cytogenetic study and K. Vlahoviček for sequence analysis and suggestions in the interpretation of the phylogeny results. This work was supported by research grant no. 119112 from the Ministry of Science, Education and Sport of the Republic of Croatia. Jasna Puizina acknowledges the support of the Gregor Mendel Institute, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Višnja Besendorfer.

Additional information

Communicated by D.B. Neale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besendorfer, V., Krajačić-Sokol, I., Jelenić, S. et al. Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theor Appl Genet 110, 730–741 (2005). https://doi.org/10.1007/s00122-004-1899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1899-y

Keywords

Navigation