Skip to main content

Advertisement

Log in

Molecular and cellular basis of scleroderma

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Systemic sclerosis (scleroderma) is a chronic inflammatory disease that leads to fibrosis of the skin and involved internal organs. No efficient therapy is currently available. This review summarizes recent progress made in basic as well as clinical science and concludes with a concept that therapy targeting fibrosis in scleroderma needs to take into account the global microenvironment in the skin with its diverse cellular players interacting with a complex extracellular matrix environment and matrix-associated growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varga J (2012) Scleroderma—from pathogenesis to comprehensive management. Springer, New York

    Google Scholar 

  2. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003

    CAS  PubMed  Google Scholar 

  3. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747

    PubMed  Google Scholar 

  4. Hunzelmann N, Genth E, Krieg T, Lehmacher W, Melchers I, Meurer M, Moinzadeh P, Muller-Ladner U, Pfeiffer C, Riemekasten G et al (2008) The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement. Rheumatology (Oxford) 47:1185–1192

    CAS  Google Scholar 

  5. Mayes MD, Lacey JV Jr, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, Schottenfeld D (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48:2246–2255

    PubMed  Google Scholar 

  6. Allanore Y, Dieude P, Boileau C (2010) Genetic background of systemic sclerosis: autoimmune genes take centre stage. Rheumatology (Oxford) 49:203–210

    CAS  Google Scholar 

  7. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963

    PubMed  Google Scholar 

  8. Reveille JD (2003) Ethnicity and race and systemic sclerosis: how it affects susceptibility, severity, antibody genetics, and clinical manifestations. Curr Rheumatol Rep 5:160–167

    PubMed  Google Scholar 

  9. Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum 44:1359–1362

    CAS  PubMed  Google Scholar 

  10. Agarwal SK, Tan FK, Arnett FC (2008) Genetics and genomic studies in scleroderma (systemic sclerosis). Rheum Dis Clin North Am 34: 17-40; v. DOI 10.1016/j.rdc.2007.10.001

  11. Zhou X, Tan FK, Wang N, Xiong M, Maghidman S, Reveille JD, Milewicz DM, Chakraborty R, Arnett FC (2003) Genome-wide association study for regions of systemic sclerosis susceptibility in a Choctaw Indian population with high disease prevalence. Arthritis Rheum 48:2585–2592

    CAS  PubMed  Google Scholar 

  12. Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P, Matucci-Cerinic M, Riemekasten G, Airo P, Melchers I et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7:e1002091

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dieude P, Guedj M, Wipff J, Avouac J, Fajardy I, Diot E, Granel B, Sibilia J, Cabane J, Mouthon L et al (2009) Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum 60:225–233

    CAS  PubMed  Google Scholar 

  14. Rueda B, Gourh P, Broen J, Agarwal SK, Simeon C, Ortego-Centeno N, Vonk MC, Coenen M, Riemekasten G, Hunzelmann N et al (2010) BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 69:700–705

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R, Coenen MJ, Vonk MC, Voskuyl AE, Schuerwegh AJ et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV, Assassi S, Ying J, Tan FK, Arnett FC et al (2014) Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 94:47–61

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Tan FK, Wang N, Kuwana M, Chakraborty R, Bona CA, Milewicz DM, Arnett FC (2001) Association of fibrillin 1 single-nucleotide polymorphism haplotypes with systemic sclerosis in Choctaw and Japanese populations. Arthritis Rheum 44:893–901

    CAS  PubMed  Google Scholar 

  18. Fonseca C, Lindahl GE, Ponticos M, Sestini P, Renzoni EA, Holmes AM, Spagnolo P, Pantelidis P, Leoni P, McHugh N et al (2007) A polymorphism in the CTGF promoter region associated with systemic sclerosis. N Engl J Med 357:1210–1220

    CAS  PubMed  Google Scholar 

  19. Tan FK, Zhou X, Mayes MD, Gourh P, Guo X, Marcum C, Jin L, Arnett FC Jr (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 45:694–702

    CAS  Google Scholar 

  20. York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R (2007) A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum 56:1010–1020

    CAS  PubMed  Google Scholar 

  21. Christmann RB, Sampaio-Barros P, Stifano G, Borges CL, de Carvalho CR, Kairalla R, Parra ER, Spira A, Simms R, Capellozzi VL et al (2014) Association of Interferon- and transforming growth factor beta-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol 66:714–725

    PubMed  Google Scholar 

  22. Galluccio F, Walker UA, Nihtyanova S, Moinzadeh P, Hunzelmann N, Krieg T, Steen V, Baron M, Sampaio-Barros P, Kayser C et al (2011) Registries in systemic sclerosis: a worldwide experience. Rheumatology (Oxford) 50:60–68

    Google Scholar 

  23. van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, Farina GA, Stifano G, Mathes AL, Cossu M et al (2014) Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med 370:433–443

    PubMed Central  PubMed  Google Scholar 

  24. Nietert PJ, Silver RM (2000) Systemic sclerosis: environmental and occupational risk factors. Curr Opin Rheumatol 12:520–526

    CAS  PubMed  Google Scholar 

  25. Namboodiri AM, Rocca KM, Pandey JP (2004) IgG antibodies to human cytomegalovirus late protein UL94 in patients with systemic sclerosis. Autoimmunity 37:241–244

    CAS  PubMed  Google Scholar 

  26. Lunardi C, Dolcino M, Peterlana D, Bason C, Navone R, Tamassia N, Beri R, Corrocher R, Puccetti A (2006) Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med 3:e2

    PubMed Central  PubMed  Google Scholar 

  27. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, Bean MA, Ober C, Bianchi DW (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351:559–562

    CAS  PubMed  Google Scholar 

  28. Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338:1186–1191

    CAS  PubMed  Google Scholar 

  29. Fleischmajer R, Perlish JS (1980) Capillary alterations in scleroderma. J Am Acad Dermatol 2:161–170

    CAS  PubMed  Google Scholar 

  30. Matucci-Cerinic M, Kahaleh B, Wigley FM (2013) Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum 65:1953–1962

    CAS  PubMed  Google Scholar 

  31. Cutolo M, Sulli A, Pizzorni C, Accardo S (2000) Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol 27:155–160

    CAS  PubMed  Google Scholar 

  32. Fleischmajer R, Perlish JS, West WP (1977) Ultrastructure of cutaneous cellular infiltrates in scleroderma. Arch Dermatol 113:1661–1666

    CAS  PubMed  Google Scholar 

  33. Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK, Molitor JA, Henstorf G, Lafyatis R, Pritchard DK, Adams LD, Furst DE, Schwartz SM (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3: e1452. DOI 10.1371/journal.pone.0001452

  34. Kahaleh MB, Sherer GK, LeRoy EC (1979) Endothelial injury in scleroderma. J Exp Med 149:1326–1335

    CAS  PubMed  Google Scholar 

  35. Riemekasten G, Philippe A, Nather M, Slowinski T, Muller DN, Heidecke H, Matucci-Cerinic M, Czirjak L, Lukitsch I, Becker M et al (2011) Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis 70:530–536

    CAS  PubMed  Google Scholar 

  36. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P (1992) Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 166:255–263

    CAS  PubMed  Google Scholar 

  37. Antsiferova M, Martin C, Huber M, Feyerabend TB, Forster A, Hartmann K, Rodewald HR, Hohl D, Werner S (2013) Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis. J Immunol 191:6147–6155

    CAS  PubMed  Google Scholar 

  38. Willenborg S, Eckes B, Brinckmann J, Krieg T, Waisman A, Hartmann K, Roers A, Eming SA (2014) Genetic ablation of mast cells redefines the role of mast cells in skin wound healing and bleomycin-induced fibrosis. J Invest Dermatol. doi:10.1038/jid.2014.12. 10.1038/jid.2014.12

    PubMed  Google Scholar 

  39. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, McCalmont TH, Brown PO, Botstein D, Connolly MK (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 100:12319–12324

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Whitfield ML (2014) Editorial: plasma and B cell gene signatures: quantitative targeting and monitoring of B cell-depleting therapies in autoimmune diseases in the genomic era. Arthritis Rheumatol 66:10–14

    PubMed  Google Scholar 

  42. Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M et al (2008) CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 172:1650–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  43. van Laar JM (2010) B-cell depletion with rituximab: a promising treatment for diffuse cutaneous systemic sclerosis. Arthritis Res Ther 12:112

    PubMed Central  PubMed  Google Scholar 

  44. Jordan S, Distler JH, Maurer B, Huscher D, van Laar JM, Allanore Y, Distler O (2014) Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204522

    PubMed Central  Google Scholar 

  45. Lafyatis R, Kissin E, York M, Farina G, Viger K, Fritzler MJ, Merkel PA, Simms RW (2009) B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum 60:578–583

    PubMed Central  PubMed  Google Scholar 

  46. Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C, Karampetsou M, Yiannopoulos G, Andonopoulos AP (2010) Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 49:271–280

    CAS  Google Scholar 

  47. Bosello S, De Santis M, Lama G, Spano C, Angelucci C, Tolusso B, Sica G, Ferraccioli G (2010) B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res ther 12:R54

    PubMed Central  PubMed  Google Scholar 

  48. Smith V, Piette Y, van Praet JT, Decuman S, Deschepper E, Elewaut D, De Keyser F (2013) Two-year results of an open pilot study of a 2-treatment course with rituximab in patients with early systemic sclerosis with diffuse skin involvement. J Rheumatol 40:52–57

    CAS  PubMed  Google Scholar 

  49. Smith V, Van Praet JT, Vandooren B, Van der Cruyssen B, Naeyaert JM, Decuman S, Elewaut D, De Keyser F (2010) Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis 69:193–197

    CAS  PubMed  Google Scholar 

  50. Abraham DJ, Krieg T, Distler J, Distler O (2009) Overview of pathogenesis of systemic sclerosis. Rheumatology (Oxford) 48(Suppl 3):iii3–7

    CAS  Google Scholar 

  51. Abraham D (2008) Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford) 47(Suppl 5):v8–9

    CAS  Google Scholar 

  52. Doering K, Rosen A (2012) Autoantibodies in pathogenesis. In: Varga J, Denton CP, Wigley FM (eds) Scleroderma Springer, pp. 199-208

  53. Mierau R, Moinzadeh P, Riemekasten G, Melchers I, Meurer M, Reichenberger F, Buslau M, Worm M, Blank N, Hein R et al (2011) Frequency of disease-associated and other nuclear autoantibodies in patients of the German Network for Systemic Scleroderma: correlation with characteristic clinical features. Arthritis Res Ther 13:R172

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Weiner ES, Earnshaw WC, Senecal JL, Bordwell B, Johnson P, Rothfield NF (1988) Clinical associations of anticentromere antibodies and antibodies to topoisomerase I. A study of 355 patients. Arthritis Rheum 31:378–385

    CAS  PubMed  Google Scholar 

  55. Steen VD, Powell DL, Medsger TA Jr (1988) Clinical correlations and prognosis based on serum autoantibodies in patients with systemic sclerosis. Arthritis Rheum 31:196–203

    CAS  PubMed  Google Scholar 

  56. Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, Fraticelli P, Sambo P, Funaro A, Kazlauskas A et al (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676

    CAS  PubMed  Google Scholar 

  57. Renaudineau Y, Revelen R, Levy Y, Salojin K, Gilburg B, Shoenfeld Y, Youinou P (1999) Anti-endothelial cell antibodies in systemic sclerosis. Clin Diagn Lab Immunol 6:156–160

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Worda M, Sgonc R, Dietrich H, Niederegger H, Sundick RS, Gershwin ME, Wick G (2003) In vivo analysis of the apoptosis-inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorionallantoic membrane assay. Arthritis Rheum 48:2605–2614

    CAS  PubMed  Google Scholar 

  59. Mihai C, Tervaert JW (2010) Anti-endothelial cell antibodies in systemic sclerosis. Ann Rheum Dis 69:319–324

    CAS  PubMed  Google Scholar 

  60. Chizzolini C, Raschi E, Rezzonico R, Testoni C, Mallone R, Gabrielli A, Facchini A, Del Papa N, Borghi MO, Dayer JM et al (2002) Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis Rheum 46:1602–1613

    CAS  PubMed  Google Scholar 

  61. Ronda N, Raschi E, Testoni C, Borghi MO, Gatti R, Dayer JM, Orlandini G, Chizzolini C, Meroni PL (2002) Anti-fibroblast antibodies in systemic sclerosis. Isr Med Assoc J 4:858–864

    CAS  PubMed  Google Scholar 

  62. Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP et al (1999) Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol 163:1066–1072

    CAS  PubMed  Google Scholar 

  63. Sato S, Hayakawa I, Hasegawa M, Fujimoto M, Takehara K (2003) Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J Invest Dermatol 120:542–547

    CAS  PubMed  Google Scholar 

  64. Nishijima C, Hayakawa I, Matsushita T, Komura K, Hasegawa M, Takehara K, Sato S (2004) Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin Exp Immunol 138:357–363

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Classen JF, Henrohn D, Rorsman F, Lennartsson J, Lauwerys BR, Wikstrom G, Rorsman C, Lenglez S, Franck-Larsson K, Tomasi JP et al (2009) Lack of evidence of stimulatory autoantibodies to platelet-derived growth factor receptor in patients with systemic sclerosis. Arthritis Rheum 60:1137–1144

    CAS  PubMed  Google Scholar 

  66. Loizos N, Lariccia L, Weiner J, Griffith H, Boin F, Hummers L, Wigley F, Kussie P (2009) Lack of detection of agonist activity by antibodies to platelet-derived growth factor receptor alpha in a subset of normal and systemic sclerosis patient sera. Arthritis Rheum 60:1145–1151

    CAS  PubMed  Google Scholar 

  67. Brinckmann J, Hunzelmann N, El-Hallous E, Krieg T, Sakai LY, Krengel S, Reinhardt DP (2005) Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients. Arthritis Res Ther 7:R1221–1226

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ong VH, Denton CP (2012) Investigative approaches to drug therapy. In: Varga J, Denton CP, Wigley FM (eds) Scleroderma. Springer, New York, pp 603–614

    Google Scholar 

  69. Shah AA, Rosen A, Hummers L, Wigley F, Casciola-Rosen L (2010) Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum 62:2787–2795

    PubMed Central  PubMed  Google Scholar 

  70. Moinzadeh P, Fonseca C, Hellmich M, Shah AA, Chighizola C, Denton CP, Ong VH (2014) Association of anti-RNA polymerase III autoantibodies and cancer in scleroderma. Arthritis Res Ther 16:R53

    PubMed Central  PubMed  Google Scholar 

  71. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I et al (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–157

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Teng MW, Smyth MJ (2014) Cancer. Can cancer trigger autoimmunity? Science 343:147–148

    CAS  PubMed  Google Scholar 

  73. Fleischmajer R, Perlish JS, Shaw KV, Pirozzi DJ (1976) Skin capillary changes in early systemic scleroderma. Electron microscopy and "in vitro" autoradiography with tritiated thymidine. Arch Dermatol 112:1553–1557

    CAS  PubMed  Google Scholar 

  74. Perlish JS, Lemlich G, Fleischmajer R (1988) Identification of collagen fibrils in scleroderma skin. J Invest Dermatol 90:48–54

    CAS  PubMed  Google Scholar 

  75. LeRoy EC (1974) Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 54:880–889

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  77. Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL, Dietz HC (2013) Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature 503:126–130

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Agarwal P, Schulz JN, Blumbach K, Andreasson K, Heinegard D, Paulsson M, Mauch C, Eming SA, Eckes B, Krieg T (2013) Enhanced deposition of cartilage oligomeric matrix protein is a common feature in fibrotic skin pathologies. Matrix Biol J Int Soc Matrix Biol 32:325–331

    CAS  Google Scholar 

  79. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180:1340–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155

    PubMed  Google Scholar 

  83. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    CAS  PubMed  Google Scholar 

  84. Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Krieg T, Perlish JS, Fleischmajer R, Braun-Falco O (1985) Collagen synthesis in scleroderma: selection of fibroblast populations during subcultures. Arch Dermatol Res 277:373–376

    CAS  PubMed  Google Scholar 

  87. Jelaska A, Strehlow D, Korn JH (1999) Fibroblast heterogeneity in physiological conditions and fibrotic disease. Springer Semin Immunopathol 21:385–395

    CAS  PubMed  Google Scholar 

  88. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279

    CAS  PubMed  Google Scholar 

  89. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Avouac J, Elhai M, Allanore Y (2013) Experimental models of dermal fibrosis and systemic sclerosis. Joint Bone Spine revue du rhumatisme 80:23–28

    CAS  Google Scholar 

  91. Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M (1998) Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol 110:47–51

    CAS  PubMed  Google Scholar 

  92. Bhattacharyya S, Wei J, Varga J (2012) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8:42–54

    CAS  Google Scholar 

  93. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J et al (2012) Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 3:735

    PubMed Central  PubMed  Google Scholar 

  94. Beyer C, Distler JH (2013) Morphogen pathways in systemic sclerosis. Curr Rheumatol Rep 15:299

    PubMed  Google Scholar 

  95. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, Gottardi CJ, Atit R, Whitfield ML, Varga J (2012) Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum 64:2734–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F, Fink L, Seeger W, Schaefer L et al (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119:772–787

    PubMed Central  PubMed  Google Scholar 

  97. Fleischmajer R, Krieg T, Dziadek M, Altchek D, Timpl R (1984) Ultrastructure and composition of connective tissue in hyalinosis cutis et mucosae skin. J Invest Dermatol 82:252–258

    CAS  PubMed  Google Scholar 

  98. Volloch V, Olsen BR (2013) Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biology J Int Soc Matrix Biol 32:365–371

    CAS  Google Scholar 

  99. Radovanac K, Morgner J, Schulz JN, Blumbach K, Patterson C, Geiger T, Mann M, Krieg T, Eckes B, Fassler R et al (2013) Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO J 32:1409–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, Nishioka K (1999) Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 112:456–462

    CAS  PubMed  Google Scholar 

  101. Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137:2–10

    CAS  PubMed  Google Scholar 

  102. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43

    CAS  PubMed  Google Scholar 

  103. Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903

    PubMed Central  PubMed  Google Scholar 

  104. Eckes B, Nischt R, Krieg T (2010) Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair 3:4

    PubMed Central  PubMed  Google Scholar 

  105. Franzke CW, Bruckner P, Bruckner-Tuderman L (2005) Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 280:4005–4008

    CAS  PubMed  Google Scholar 

  106. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955–1958

    CAS  PubMed  Google Scholar 

  107. Seth P, Yeowell HN (2010) Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA. Arthritis Rheum 62:1167–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rimar D, Rosner I, Nov Y, Slobodin G, Rozenbaum M, Halasz K, Haj T, Jiries N, Kaly L, Boulman N et al (2013) Lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis. Arthritis Rheum. doi:10.1002/art.38277

    Google Scholar 

  109. Brinckmann J, Kim S, Wu J, Reinhardt DP, Batmunkh C, Metzen E, Notbohm H, Bank RA, Krieg T, Hunzelmann N (2005) Interleukin 4 and prolonged hypoxia induce a higher gene expression of lysyl hydroxylase 2 and an altered cross-link pattern: important pathogenetic steps in early and late stage of systemic scleroderma? Matrix Biol J Int Soc Matrix Biol 24:459–468

    CAS  Google Scholar 

  110. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harbor perspectives in biology 3. DOI 10.1101/cshperspect.a004994

  111. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    CAS  PubMed Central  PubMed  Google Scholar 

  112. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    CAS  PubMed  Google Scholar 

  114. Erat MC, Slatter DA, Lowe ED, Millard CJ, Farndale RW, Campbell ID, Vakonakis I (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci U S A 106:4195–4200

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Erat MC, Sladek B, Campbell ID, Vakonakis I (2013) Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem 288:17441–17450

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277:37377–37381

    CAS  PubMed  Google Scholar 

  117. Kobayashi N, Kostka G, Garbe JH, Keene DR, Bachinger HP, Hanisch FG, Markova D, Tsuda T, Timpl R, Chu ML et al (2007) A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem 282:11805–11816

    CAS  PubMed  Google Scholar 

  118. Finnis ML, Gibson MA (1997) Microfibril-associated glycoprotein-1 (MAGP-1) binds to the pepsin-resistant domain of the alpha3(VI) chain of type VI collagen. J Biol Chem 272:22817–22823

    CAS  PubMed  Google Scholar 

  119. Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM, Jimenez SA (1996) A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res 6:300–313

    CAS  PubMed  Google Scholar 

  120. Gayraud B, Keene DR, Sakai LY, Ramirez F (2000) New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol 150:667–680

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, Judge DP, Wigley F, Davis EC, Mardon HJ, Handford P, Keene DR, Sakai LY, Dietz HC (2010) Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med 2: 23ra20. DOI 10.1126/scitranslmed.3000488

  122. Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y et al (2011) Mutations in the TGFbeta binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet 89:7–14

    PubMed Central  PubMed  Google Scholar 

  123. Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR et al (2012) Microenvironmental regulation by fibrillin-1. PLoS Genet 8:e1002425

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B (2001) Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J Biol Chem 276:36575–36585

    CAS  PubMed  Google Scholar 

  125. Munger JS, Sheppard D (2011) Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biolo 3:a005017

    Google Scholar 

  126. Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165:723–734

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sheppard D (2005) Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 24:395–402

    CAS  PubMed  Google Scholar 

  128. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all members of the Dermatology Department in Cologne and the SFB 829 for stimulating discussion. Many thanks go to Dr. Monique Aumailley for creative artwork. Our work is supported by Deutsche Forschungsgemeinschaft (KR558 to TK) and through SFB 829 (BE, TK, and GS), Deutsche Stiftung Sklerodermie (NH and PM), Edith Busch Foundation (NH) and by the Koeln Fortune Program/Faculty of Medicine, University of Cologne (PM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Krieg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckes, B., Moinzadeh, P., Sengle, G. et al. Molecular and cellular basis of scleroderma. J Mol Med 92, 913–924 (2014). https://doi.org/10.1007/s00109-014-1190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1190-x

Keywords

Navigation