Skip to main content
Log in

Role of CD95 in pulmonary inflammation and infection in cystic fibrosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cystic fibrosis is caused by a defective expression of the cystic fibrosis transmembrane conductance regulator (Cftr) gene, which results in chronic pulmonary inflammation and infections. The pathophysiological mechanisms by which these changes are induced in the lungs of patients with cystic fibrosis require definition. This study found that Cftr deficiency in mice results in the upregulation and activation of CD95. CD95 activation is caused by increased ceramide concentrations in cystic fibrosis lungs, as revealed by genetic modifications that normalize pulmonary ceramide concentrations. The activation of CD95 in cystic fibrosis lungs further increases pulmonary ceramide levels and results in a vicious feedback cycle of CD95 activation and ceramide accumulation. Genetic studies reveal that CD95 is crucially involved in the induction of aseptic inflammation, an increase in the bronchial cell death rate, and an increased susceptibility to infection of Cftr-deficient mice. All of these pathologies are partially corrected by heterozygosity of CD95 in Cftr-deficient mice. These findings identify CD95 as an important regulator of lung functions in cystic fibrosis and suggest that CD95 may be a novel target for treating cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. CF Foundation (2004) Patient registry annual report. CF Foundation, Bethesda

    Google Scholar 

  2. American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416

    Article  Google Scholar 

  3. Ratjen F, Döring G (2003) Cystic fibrosis. Lancet 361:681–689

    Article  PubMed  CAS  Google Scholar 

  4. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  PubMed  CAS  Google Scholar 

  5. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  6. Matsui H, Verghese MW, Kesimer M, Schwab UE, Randell SH, Sheehan JK, Grubb BR, Boucher RC (2005) Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol 175:1090–1099

    PubMed  CAS  Google Scholar 

  7. Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170

    Article  PubMed  CAS  Google Scholar 

  8. Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K et al (2010) Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 143:911–923

    Article  PubMed  CAS  Google Scholar 

  9. Tirouvanziam R, de Bentzmann S, Hubeau C, Hinnrasky J, Jacquot J, Peault B, Puchelle E (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23:121–127

    PubMed  CAS  Google Scholar 

  10. Inoue H, Massion PP, Ueki IF, Grattan KM, Hara M, Dohrman AF, Chan B, Lausier JA, Golden JA, Nadel JA (1994) Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am J Respir Cell Mol Biol 11:651–663

    PubMed  CAS  Google Scholar 

  11. Oceandy D, McMorran BJ, Smith SN, Schreiber R, Kunzelmann K, Alton EW, Hume DA, Wainwright BJ (2002) Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum Mol Genet 11:1059–1067

    Article  PubMed  CAS  Google Scholar 

  12. Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  Google Scholar 

  13. Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13:257–261

    PubMed  CAS  Google Scholar 

  14. Brodlie M, McKean MC, Johnson GE, Gray J, Fisher AJ, Corris PA, Lordan JL, Ward C (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 182:369–375

    Article  PubMed  CAS  Google Scholar 

  15. Becker KA, Riethmüller J, Luth A, Döring G, Kleuser B, Gulbins E (2010) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42:716–724

    Article  PubMed  CAS  Google Scholar 

  16. Ulrich M, Worlitzsch D, Viglio S, Siegmann N, Iadarola P, Shute JK, Geiser M, Pier GB, Friedel G, Barr ML et al (2010) Alveolar inflammation in cystic fibrosis. J Cyst Fibros 9:217–227

    Article  PubMed  CAS  Google Scholar 

  17. Bodas M, Min T, Vij N (2011) Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 300:L811–L820

    Article  PubMed  CAS  Google Scholar 

  18. Bodas M, Min T, Mazur S, Vij N (2011) Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J Immunol 186:602–613

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254

    PubMed  CAS  Google Scholar 

  20. Becker KA, Tümmler B, Gulbins E, Grassmé H (2010) Accumulation of ceramide in the trachea and intestine of cystic fibrosis causes inflammation and cell death. Biochem Biophys Res Commun 403:368–374

    Article  PubMed  CAS  Google Scholar 

  21. Kumar V, Becker T, Jansen S, van Barneveld A, Boztug K, Wolfl S, Tummler B, Stanke F (2008) Expression levels of FAS are regulated through an evolutionary conserved element in intron 2, which modulates cystic fibrosis disease severity. Genes Immun 9:689–696

    Article  PubMed  CAS  Google Scholar 

  22. Stanke F, Becker T, Kumar V, Hedtfeld S, Becker C, Cuppens H, Tamm S, Yarden J, Laabs U, Siebert B et al (2011) Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. J Med Genet 48:24–31

    Article  PubMed  CAS  Google Scholar 

  23. Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  24. Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  25. Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90:1756–1760

    Article  PubMed  CAS  Google Scholar 

  26. Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  PubMed  CAS  Google Scholar 

  27. Durieu I, Amsellem C, Paulin C, Chambe MT, Bienvenu J, Bellon G, Pacheco Y (1999) Fas and Fas ligand expression in cystic fibrosis airway epithelium. Thorax 54:1093–1098

    Article  PubMed  CAS  Google Scholar 

  28. Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC (2007) Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. FASEB J 21:2939–2948

    Article  PubMed  Google Scholar 

  29. Amsellem C, Durieu CMT, Peyrol S, Pacheco Y (2002) In vitro expression of fas and CD40 and induction of apoptosis in human cystic fibrosis airway epithelial cells. Respir Med 96:244–249

    Article  PubMed  CAS  Google Scholar 

  30. Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of the mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:64–67

    Article  PubMed  CAS  Google Scholar 

  31. Gadjeva M, Paradis-Bleau C, Priebe G, Fichorova R, Pier GB (2010) Caveolin-1 modifies the immunity to P. aeruginosa. J Immunol 184:296–302

    Article  PubMed  CAS  Google Scholar 

  32. Krammer PH, Kaminski M, Kiessling M, Gulow K (2007) No life without death. Adv Cancer Res 97:111–138

    Article  PubMed  CAS  Google Scholar 

  33. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    Article  PubMed  CAS  Google Scholar 

  34. Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T (1998) Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 4:1287–1292

    Article  PubMed  CAS  Google Scholar 

  35. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  PubMed  CAS  Google Scholar 

  36. Lamkanfi M, Dixit VM (2009) The inflammasomes. PLoS Pathog 5:e1000510

    Article  PubMed  Google Scholar 

  37. Brodsky IE, Monack D (2009) NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 21:199–207

    Article  PubMed  CAS  Google Scholar 

  38. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    Article  PubMed  CAS  Google Scholar 

  39. Mrugacz M (2009) Fas expression in conjunctival epithelial cells of patients with cystic fibrosis. J Interferon Cytokine Res 29:735–740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Soddemann, S. Harde and B. Wilker for technical support. The study was supported by DFG grant Gu 335-16/2 to E.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Grassmé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K.A., Henry, B., Ziobro, R. et al. Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med 90, 1011–1023 (2012). https://doi.org/10.1007/s00109-012-0867-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0867-2

Keywords

Navigation