Skip to main content

Advertisement

Log in

Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Healing of skin wounds is a multi-step process involving the migration and proliferation of basal keratinocytes in epidermis, which strongly express the water/glycerol-transporting protein aquaporin-3 (AQP3). In this study, we show impaired skin wound healing in AQP3-deficient mice, which results from distinct defects in epidermal cell migration and proliferation. In vivo wound healing was ~80% complete in wild-type mice at 5 days vs ~50% complete in AQP3 null mice, with remarkably fewer proliferating, BrdU-positive keratinocytes. After AQP3 knock-down in keratinocyte cell cultures, which reduced cell membrane water and glycerol permeabilities, cell migration was slowed by more than twofold, with reduced lamellipodia formation at the leading edge of migrating cells. Proliferation of AQP3 knock-down keratinocytes was significantly impaired during wound repair. Mitogen-induced cell proliferation was also impaired in AQP3 deficient keratinocytes, with greatly reduced p38 MAPK activity. In mice, oral glycerol supplementation largely corrected defective wound healing and epidermal cell proliferation. Our results provide evidence for involvement of AQP3-facilitated water transport in epidermal cell migration and for AQP3-facilitated glycerol transport in epidermal cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AQP:

aquaporin

MAPK:

mitogen-activated protein kinase

References

  1. Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  2. Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13:6–11

    PubMed  CAS  Google Scholar 

  3. Morasso MI, Tomic-Canic M (2005) Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell 97:173–183

    Article  PubMed  CAS  Google Scholar 

  4. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  5. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exper Cell Res 304:274–286

    Article  CAS  Google Scholar 

  6. Verkman AS (2005) Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 155:31–55

    Article  PubMed  CAS  Google Scholar 

  7. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758:1085–1093

    Article  PubMed  CAS  Google Scholar 

  8. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  9. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280:15493–15496

    Article  PubMed  CAS  Google Scholar 

  10. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed  CAS  Google Scholar 

  11. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  12. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    Article  PubMed  CAS  Google Scholar 

  13. Hara-Chikuma M, Verkman AS (2006) Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17:39–45

    Article  PubMed  CAS  Google Scholar 

  14. Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892–1894

    Article  PubMed  CAS  Google Scholar 

  15. Levin MH, Verkman AS (2006) Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci 47:4365–4372

    Article  PubMed  Google Scholar 

  16. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108:2993–3002

    PubMed  CAS  Google Scholar 

  17. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153

    Article  PubMed  CAS  Google Scholar 

  18. Sougrat R, Morand M, Gondran C, Barre P, Gobin R, Bonte F, Dumas M, Verbavatz JM (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 118:678–685

    Article  PubMed  CAS  Google Scholar 

  19. Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621

    Article  PubMed  CAS  Google Scholar 

  20. Hara M, Verkman AS (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci U S A 100:7360–7365

    Article  PubMed  CAS  Google Scholar 

  21. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391

    Article  PubMed  CAS  Google Scholar 

  22. Farrell AM, Uchida Y, Nagiec MM, Harris IR, Dickson RC, Elias PM, Holleran WM (1998) UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res 39:2031–2038

    PubMed  CAS  Google Scholar 

  23. Calderon M, Lawrence WT, Banes AJ (1996) Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res 61:343–347

    Article  PubMed  CAS  Google Scholar 

  24. Marikovsky M, Breuing K, Liu PY, Eriksson E, Higashiyama S, Farber P, Abraham J, Klagsbrun M (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci U S A 90:3889–3893

    Article  PubMed  CAS  Google Scholar 

  25. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  26. Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S (2003) p38 Mitogen-activated protein kinases on the body surface–a function for p38 delta. J Invest Dermatol 120:823–828

    Article  PubMed  CAS  Google Scholar 

  27. Thiagarajah JR, Verkman AS (2007) Impaired enterocyte proliferation in aquaporin-3 deficiency in a mouse model of colitis. Gut (in press) DOI 10.1136/gut.2006.104620

  28. Cao C, Sun Y, Healey S, Bi Z, Hu G, Wan S, Kouttab N, Chu W, Wan Y (2006) EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration. Biochem J 400:225–234

    Article  PubMed  CAS  Google Scholar 

  29. Verkman AS (2000) Water permeability measurement in living cells and complex tissues. J Membr Biol 173:73–87

    Article  PubMed  CAS  Google Scholar 

  30. Argyris T (1976) Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am J Pathol 83:329–340

    PubMed  CAS  Google Scholar 

  31. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461

    Article  PubMed  CAS  Google Scholar 

  32. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  PubMed  CAS  Google Scholar 

  33. Hildesheim J, Awwad RT, Fornace AJ Jr (2004) p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses. J Invest Dermatol 122:497–502

    Article  PubMed  CAS  Google Scholar 

  34. Turchi L, Chassot AA, Rezzonico R, Yeow K, Loubat A, Ferrua B, Lenegrate G, Ortonne JP, Ponzio G (2002) Dynamic characterization of the molecular events during in vitro epidermal wound healing. J Invest Dermatol 119:56–63

    Article  PubMed  CAS  Google Scholar 

  35. Harper EG, Alvares SM, Carter WG (2005) Wounding activates p38 map kinase and activation transcription factor 3 in leading keratinocytes. J Cell Sci 118:3471–3485

    Article  PubMed  CAS  Google Scholar 

  36. Fitsialos G, Chassot AA, Turchi L, Dayem MA, Lebrigand K, Moreilhon C, Meneguzzi G, Buscà R, Mari B, Barbry P, Ponzio G (2007) Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 282:15090–15102

    Article  PubMed  CAS  Google Scholar 

  37. Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D (2001) Glycerol: a neglected variable in metabolic processes? Bioessays 23:534–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Liman Qian for mouse breeding and genotype analysis. This work was supported by NIH grants DK35124, EY13574, EB00415, HL59198, HL73856, and DK72517 and Research Development Program and Drug Discovery grants from the Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Verkman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara-Chikuma, M., Verkman, A.S. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 86, 221–231 (2008). https://doi.org/10.1007/s00109-007-0272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0272-4

Keywords

Navigation