Skip to main content
Log in

Hyperbolic four-manifolds with one cusp

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with volume ⩽ V grows like C V ln V for any fixed k. As a corollary, we deduce that the 3-torus bounds geometrically a hyperbolic manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.: Dehn filling and Einstein metrics in higher dimensions. J. Diff. Geom. 73, 219–261 (2006)

    MATH  Google Scholar 

  2. Bamler R.H.: Construction of Einstein metrics by generalized Dehn filling. J. Eur. Math. Soc. 14, 887–909 (2009)

    MathSciNet  Google Scholar 

  3. Bollobà às B.: The asymptotic number of unlabelled regular graphs. J. London Math. Soc. 26, 201–206 (1982)

    Article  MathSciNet  Google Scholar 

  4. Burger M., Gelander T., Lubotzky A., Mozes S.: Counting hyperbolic manifolds. Geom. & Funct. Anal., 12, 1161–1173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costantino F., Frigerio R., Martelli B., Petronio C.: Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling. Comm. Math. Helv. 82, 903–934 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Culler, N. Dunfield, and J. Weeks. SnapPy, a computer program for studying the geometry and topology of 3-manifolds. http://snappy.computop.org/

  7. Gromov M.: Volume and bounded cohomology. Publ. IHES. 56, 5–99 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Epstein D.B.A., Penner R.C.: Euclidean decompositions of non-compact hyperbolic manifolds. J. Diff. Geom. 27, 67–80 (1988)

    MathSciNet  MATH  Google Scholar 

  9. R. Frigerio, J. Lafont, and A. Sisto. Rigidity of high dimensional graph manifolds, arXiv:1107.2019

  10. Fujiwara K., Manning J.F.: Simplicial volume and fillings of hyperbolic manifolds. Algebraic & Geometric Topology 11, 2237–2264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolpakov A.: On the optimality of the ideal right-angled 24-cell. Alg. Geom. Topol. 12, 1941–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Long D.D., Reid A.W.: On the geometric boundaries of hyperbolic 4-manifolds. Geom. Topol. 4, 171–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Long D.D., Reid A.W.: All flat manifolds are cusps of hyperbolic orbifolds. Alg. Geom. Topol. 2, 285–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nimershiem B.E.: All flat three-manifolds appear as cusps of hyperbolic four-manifolds. Topology and Its Appl. 90, 109–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.P. Novikov. Pontrjagin Classes, the Fundamental Group and some Problems of Stable Algebra. Essays on Topology and Related Topics (1970) 147–155; available from http://www.maths.ed.ac.uk/aar/papers/novstable.pdf

  16. P. Ontaneda. Pinched Smooth Hyperbolization, arXiv:1110.6374

  17. Ratcliffe G.J., Tschantz S.T.: The volume spectrum of hyperbolic 4-manifolds. Experimental Math. 9, 101–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stover M.: On the number of ends of rank one locally symmetric spaces. Geom. Topol. 17, 905–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. W.P. Thurston. Geometry and Topology of 3-Manifolds. mimeographed notes, Princeton University (1979); available from http://www.msri.org/publications/books/gt3m/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kolpakov.

Additional information

A. Kolpakov was supported by the SNSF researcher scholarship PBFRP2-145885 and the SNSF project “Discrete hyperbolic geometry” no. 200020-144438/1. B. Martelli was supported by the Italian FIRB project “Geometry and topology of low-dimensional manifolds”, RBFR10GHHH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolpakov, A., Martelli, B. Hyperbolic four-manifolds with one cusp. Geom. Funct. Anal. 23, 1903–1933 (2013). https://doi.org/10.1007/s00039-013-0247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0247-2

Keywords

Navigation