Skip to main content
Log in

Prescription of General Defective Boundary Conditions in Fluid-Dynamics

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This work reviews and extends to a more general setting some strategies to impose defective boundary conditions in fluid-dynamic problems investigated by the authors in the last years. We focus here to the steady Stokes problem. We show the well posedness of the proposed approaches and discuss their relative benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Benzi, H. G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, pages 1–137, 2005.

  2. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer Verlag, 1991.

  3. Formaggia L., Gerbeau J.–F., Nobile F., Quarteroni A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equation. SIAM Journal on Numerical Analysis, 40(1), 376–401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Formaggia L., Veneziani A., Vergara C.: A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM Journal on Numerical Analysis, 46(6), 2769–2794 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Formaggia L., Veneziani A., Vergara C.: Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Computer Methods in Applied Mechanics and Engineering, 199(9-12), 677–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Girault and P.A. Raviart. Finite element methods for Navier-Stokes equations. Springer–Verlag, 1986.

  7. Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 22, 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Juntunen M., Stenberg R.: Nitsche’s method for general boundary conditions. Math. Comp., 78, 1353–1374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nitsche J.A.: Uber ein variationsprinzip zur lozung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 36, 9–15 (1970)

    Article  MathSciNet  Google Scholar 

  10. Perktold K., Nerem R.M., Peter R.O.: A numerical calculation of flow in a curved tube model of the left main coronary artery. Journal of Biomechanics, 24, 175–189 (1991)

    Article  Google Scholar 

  11. A. Porpora, P. Zunino, C. Vergara, and M. Piccinelli. Numerical treatment of boundary conditions to replace lateral branches in haemodynamics. Int J Num Meth Biomed Eng, accepted for pubblication.

  12. Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: Problems, models and methods. Computing and Visualisation in Science, 2, 163–197 (2000)

    Article  MATH  Google Scholar 

  13. Steinman D., Taylor C.: Flow imaging and computing: Large artery hemodynamics. Annals Biomed. Eng. 33(12), 1704–1709 (2005)

    Article  Google Scholar 

  14. R. Temam. Navier-Stokes equations and functional analysis. SIAM, Philadelphia, 1983.

  15. V. Thomée. Galerkin finite element method for parabolic problems. Springer, Springer series in computational matehmatics, vol. 25, 2001.

  16. A. Veneziani. Mathematical and Numerical Modeling of Blood Flow Problems. PhD thesis, University of Milan, 1998.

  17. Veneziani A., Vergara C.: Flow rate defective boundary conditions in haemodinamics simulations. International Journal for Numerical Methods in Fluids, 47, 803–816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Vergara. Numerical Modeling of Defective Boundary Problems in Incompressible Fluid dynamics. Applications to Computational Haemodynamics. PhD thesis, MOX - Politecnico di Milano, 2006.

  19. Vergara C.: Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. Journal of Scientific Computing, 46, 100–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Vergara, F. Viscardi, L. Antiga, and G.B. Luciani. Influence of bicuspid valve geometry on ascending aortic fluid-dynamics: a parametric study. Artificial Organs, 2011.

  21. Vignon-Clementel I., Figueroa C., Jansen K., Taylor C.: Outflow boundar conditions for the three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering, 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zunino P.: Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty technique. Computer Methods in Applied Mechanics and Engineering, 198(37-40), 3026–3038 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Formaggia.

Additional information

This work has been (partially) supported by the ERC Advanced Grant N.227058 MATHCARD and by the Italian MIUR PRIN09 project n. 2009Y4RC3B_001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formaggia, L., Vergara, C. Prescription of General Defective Boundary Conditions in Fluid-Dynamics. Milan J. Math. 80, 333–350 (2012). https://doi.org/10.1007/s00032-012-0185-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0185-8

Mathematics Subject Classification (2010)

Keywords

Navigation