Skip to main content
Log in

On the structure of the Witt group of braided fusion categories

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We analyze the structure of the Witt group \({\mathcal{W}}\) of braided fusion categories introduced in Davydov et al. (Journal für die reine und angewandte Mathematik (Crelle’s Journal), eprint arXiv: 1009.2117 [math.QA], 2010). We define a “super” version of the categorical Witt group, namely, the group \({s\mathcal{W}}\) of slightly degenerate braided fusion categories. We prove that \({s\mathcal{W}}\) is a direct sum of the classical part, an elementary Abelian 2-group, and a free Abelian group. Furthermore, we show that the kernel of the canonical homomorphism \({S : \mathcal{W} \to s\mathcal{W}}\) is generated by Ising categories and is isomorphic to \({{\mathbb{Z}}/16\mathbb{Z}}\) . Finally, we give a complete description of étale algebras in tensor products of braided fusion categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov B., Kirillov A. Jr.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, vol. 21. American Mathematical Society, Providence (2001)

  2. Bezrukavnikov R.: On tensor categories attached to cells in affine Weyl groups. In: Representation Theory of Algebraic Groups and Quantum Groups, Advanced Studies in Pure Mathematics, vol. 40, pp. 69–90. Mathematical Society, Tokyo (2004)

  3. Bockenhauer J., Evans D.E.: Modular invariants from subfactors: type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213(2), 267–289 (2000)

    Article  MathSciNet  Google Scholar 

  4. Davydov A.: Modular invariants for group-theoretical modular data. J. Algebra 323, 1321–1348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik (Crelle’s Journal), eprint arXiv: 1009.2117 [math.QA] (2010) (to appear)

  6. Deligne P.: Catégories tensorielles. Moscow Math. J. 2(2), 227–248 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Dijkgraaf R., Verlinde E.: Modular invariance and the fusion algebras. Nucl. Phys. (Proc. Suppl.) 5B, 87–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories I. Selecta Mathematica 16(1), 1–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories II (in preparation)

  10. Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162, 581–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Etingof P., Nikshych D., Ostrik V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226, 176–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Etingof P., Nikshych D., Ostrik V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Etingof P., Ostrik V.: Finite tensor categories. Moscow Math. J. 4, 627–654 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Frenkel I., Kac V.: Basic representations of affine Lie algebras and dual resonansce models. Invent. Math. 62, 23–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frohlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006)

    Article  MathSciNet  Google Scholar 

  16. Greenough J.: Monoidal 2-structure of bimodule categories. J. Algebra 324(8), 1818–1859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang Y.-Z., Lepowski J.: A theory of tensor products for module categories for a vertex operator algebra I, II. Selecta Math. (N.S.) 1(4), 699–756, 757–786 (1995)

    Google Scholar 

  18. Joyal A., Street R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirillov A. Jr, Ostrik V.: On q-analog of McKay correspondence and ADE classification of \({\hat{\mathfrak{s}\mathfrak{l}}_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kong L., Runkel I.: Morita classes of algebras in modular tensor categories. Adv. Math. 219(5), 1548–1576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Majid S.: Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Mat. Palermo (2) Suppl. 26, 197–206 (1991)

    MathSciNet  Google Scholar 

  22. Moore G., Seiberg N.: Naturality in conformal field theory. Nucl. Phys. B 313, 16–40 (1989)

    Article  MathSciNet  Google Scholar 

  23. Müger M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150(2), 151–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Müger M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87, 291–308 (2003)

    Article  MATH  Google Scholar 

  25. Müger M.: From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180, 81–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ocneanu A.: Operator algebras, topology and subgroups of quantum symmetryconstruction of subgroups of quantum groups. In: Taniguchi Conference on Mathematics Nara ’98, Advanced Studies in Pure Math., vol. 31, 235263 (2001)

  27. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schauenburg P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2–3), 325–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Nikshych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydov, A., Nikshych, D. & Ostrik, V. On the structure of the Witt group of braided fusion categories. Sel. Math. New Ser. 19, 237–269 (2013). https://doi.org/10.1007/s00029-012-0093-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-012-0093-3

Keywords

Mathematics Subject Classification

Navigation