Skip to main content
Log in

Monitoring oxidative stress in patients with non-alcoholic and alcoholic liver diseases

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Ethanol-induced liver injury may be linked, at least partly, to an oxidative stress resulting from increased free radical production and/or decreased antioxidant defence. Distinguishing alcoholic and non-alcoholic liver disease has important implications. This study looked at the possible changes between alcoholic and non-alcoholic liver diseases by examining the presence of oxidative damage, as monitored by several parameters relating to oxidative stress. Lipid peroxides concentration, superoxide dismutase activity and glutathione S-transferase activity increased, where as glutathione content, glutathione peroxidase activity and glutathione reductase activity decreased among the tested subjects in comparison to normal healthy group. Determination of these parameters may be valuable in the evaluation of liver disease. However, oxidative stress related enzymes and non-enzymes can not be utilized as a marker for alcoholic liver diseases, as these parameters responded in the same way after liver is damaged irrespective of their cause. Their level may help in determining the degree of liver damage. Degree of oxidative injury was similar in patients with non-alcoholic liver disease and in moderate drinkers; while significantly higher in heavy drinkers. The differences between the groups might be based on the type of liver pathological condition rather than its etiology (i.e. alcohol and non alcohol related causes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernandez-Checha, J.C., Kaplowitz, N., Colell, A. and Gracia-Ruiz, C. (1997) Oxidative stress and alcoholic liver disease. Alcohol Health & Res World 21(4): 321–324.

    Google Scholar 

  2. Hagymasi, K., Blazovics, A., Lengyel, G., Kocsis, I. and Feher, J. (2001) Oxidative damage in alcoholic liver disease. Eur J Gastroenterol Hepatol 13(1): 49–53.

    Article  PubMed  CAS  Google Scholar 

  3. Ishii, H., Kurose, I. and Kato, S. (1997) Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol 12(9–10): S272–82

    Article  Google Scholar 

  4. Irving MG, Halliday JW, Dowell LW, (1988) Association between alcoholism and increased hepatic iron stores. Alcoholism Clin Exp., 12, 7–13.

    Article  CAS  Google Scholar 

  5. Paton, A. (1994) Asking the right questions. In: ABC of Alcohol, Ed. A. Paton, BMJ Publishing Group, Tavistock square, London, p.14.

    Google Scholar 

  6. Kingsley, G.R. (1942) The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry.J Lab Clin Med. 27: 840–845.

    CAS  Google Scholar 

  7. van Kampen, E.J. and Zijlstra, W.G. (1965) Determination of hemoglobin and its derivatives. Adv Clin Chem. 8: 141–187.

    PubMed  Google Scholar 

  8. McCormick, D.B. and Greene, H.L. (1998) Vitamin. In: Tietz Textbook of Clinical Chemistry. Eds. CA Burtis and ER Ashwood, W.B. Saunders Company, USA, p. 1025.

    Google Scholar 

  9. Sinnhuber, R.O., Yu, T.C. and Yu, T.C. (1958) Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 23: 626–630.

    CAS  Google Scholar 

  10. Beutler, E., Duron, O. and Kelly, B.M. (1963) Improved method for determination of blood glutathione. J. Lab. Clin. Med. 61: 882–888.

    PubMed  CAS  Google Scholar 

  11. Beers, R.F. and Sizer, I.W. (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxides by catalase. J. Biol. Chem. 195: 133–140.

    PubMed  CAS  Google Scholar 

  12. Pinto, R.E. and Bartley, W. (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem. J. 112: 109–115.

    PubMed  CAS  Google Scholar 

  13. Paglia, D.E. and Valentine, W.N. (1967) Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J. Lab. Clin. Med. 70: 158–159.

    PubMed  CAS  Google Scholar 

  14. Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249: 7130–7139.

    PubMed  CAS  Google Scholar 

  15. Paoletti, F., Aldinucci, D., Mocali, A. and Caparrini, A. (1986). A sensitive spectro photometric method for the determination of the superoxide dismutase activity in tissue extract. J. Biochem. 154: 536–541.

    CAS  Google Scholar 

  16. Kornberg, A. and Horecker, B.L. (1955). In: Methods in Enzymology, Eds. SP Colowick, NO Kaplan, Academic Press, New York, p. 739.

    Google Scholar 

  17. Das, S.K., Nayak, P. and Vasudevan, D.M. (2003) Biochemical Markers for Alcohol Consumption. Ind. J. Clin. Biochem. 18(2): 111–118

    Article  CAS  Google Scholar 

  18. Olinescu, R., Alexandrescu, R., Hulea, S.A. and Kummerow, F.A. (1994) Tissue lipid peroxidation may be triggered by increased formation of bilirubinin vivo. Res. Commun. Chem. Pathol. Pharmacol. 84(1): 27–34.

    PubMed  CAS  Google Scholar 

  19. Plaa, G.L. and Witschi, H. (1976) Chemicals, drugs and lipid peroxidation. Ann. Rev. Pharmacol. Toxicol. 16: 125–141.

    Article  CAS  Google Scholar 

  20. Videla, L.A., Iturriaga, H., Pino, M.E., Bunout, D., Valenzuela, A. and Ugarate, G. (1984) Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of the abstinence and liver necrosis. Clin. Sci., 66: 283–290.

    PubMed  CAS  Google Scholar 

  21. Farooqui, M.Y.H. and Ahmed, A.E. (1984) Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sc., 34: 2413–18.

    Article  CAS  Google Scholar 

  22. Svadlenka, I., Davidkova, E. and Rosmus, J. (1975) Interction of MDA with collagen. Z. Lebensm Unters Forsch. 157:263.

    Article  PubMed  CAS  Google Scholar 

  23. Pfafferoot, C., Meiselman, H.J. and Hochstein, P. (1982) The effect of MDA on erythrocyte deformability. Blood 59: 12.

    Google Scholar 

  24. Zima, T., Fialova, L., Mestek, O., Janebova, M., Crkovska, J., Malbohan, I., Stipek, S., Mikulikova, L. and Popov, P. (2001). Oxidative Stress, Metabolism of Ethanol and Alcohol-Related Diseases. J. Biomed. Sci. 8(1): 59–70.

    Article  PubMed  CAS  Google Scholar 

  25. Gabbita, S.P., Robinson, K.A., Stewart, C.A., Floyd, R.A. and Hensley, K. (2000) Redox regulatory mechanisms of a cellular signal transduction. Arch. Biochem. Biophys. 376: 1–13.

    Article  PubMed  CAS  Google Scholar 

  26. Kono, Y. and Fridovich, I. (1982) Superoxide radical inhibits catalase. J. Biol. Chem. 257: 5751–5754.

    PubMed  CAS  Google Scholar 

  27. Thome, J., Foley, P., Gsell, W., Davids, E., Wodarz, N., Wiesbeck, G.A., Boning, J. and Riederer, P. (1997) Increased concentrations of manganese superoxide dismutase in serum of alcohol-dependent patients. Alcohol Alcohol 32(1): 65–69.

    PubMed  CAS  Google Scholar 

  28. Kubota, S., Sato, N., Matsumura, T. and Kamada, T. (1985) Chemiluminescence and superoxide dismutase in the plasma in patients with alcoholic and non-alcoholic liver injuries. Alcohol 2(3): 469–72.

    Article  PubMed  CAS  Google Scholar 

  29. Kiklugawa, K., Kosugi, H. and Asakura, T. (1984) Effects of MDA, a product of lipid peroxidation on the function and stability of haemoglobin. Arch. Biochem. Biophys. 229: 7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.K., Vasudevan, D.M. Monitoring oxidative stress in patients with non-alcoholic and alcoholic liver diseases. Indian J Clin Biochem 20, 24–28 (2005). https://doi.org/10.1007/BF02867396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02867396

Key Words

Navigation