Skip to main content
Log in

Dietary triacylglycerol structure and saturated fat alter plasma and tissue fatty acids in piglets

  • Articles
  • Published:
Lipids

Abstract

Human and pig milk triacylglycerols contain a large proportion of palmitic acid (16:0) which is predominately esterified in the 2-position. Other dietary fats contain variable amounts of 16:0, with unsaturated fatty acids predominantly esterified in the 2-position. These studies determined if the amount or position of 16:0 in dietary fat influences the composition or distribution of liver, adipose tissue, lung, or plasma fatty acids in developing piglets. Piglets were fed to 18 d with sow milk or formula with saturated fat from medium-chain triglyceride (MCT), coconut or palm oil, or synthesized triacylglycerols (synthesized to specifically direct 16:0 to the 2-position) with, in total fatty acids, 30.7, 4.3, 6.5, 27.0, and 29.6% 16:0, and in 2-position fatty acids, 55.3, 0.4, 1.3, 4.4, and 69.9% 16:0, respectively. The percentage of 16:0 in the 2-position of adipose fat from piglets fed sow milk, palm oil, and synthesized triacylglycerols were similar and higher than in piglets fed MCT or coconut oil. Thus, the amount, not the position, of dietary 16:0 determines piglet adipose tissue 16:0 content. The effects of the diets on the plasma and liver triacylglycerols were similar, with significantly lower 16:0 in total and 2-position fatty acids of the MCT and coconut oil groups, and significantly higher 16:0 in the plasma and liver triacylglycerol 2-position of piglets fed the synthesized triacylglycerols rather than sow milk or palm oil. The lung phospholipid total and 2-position 16:0 was significantly lower in the MCT, coconut, and palm oil groups, but similar in the synthesized triacylglycerol group and sow milk group. The lung phospholipid total and 2-position percentage of arachidonic acid (20:4n-6) was significantly lower in all of the formula-fed piglets than in milk-fed piglets. The physiological significance of this is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPL:

lipoprotein lipase

MCT:

medium-chain triglyceride

References

  1. Small, D.M. (1991) The Effects of Glyceride Structure on Absorption and Metabolism,Annu. Rev. Nutr. 11, 413–434.

    Article  PubMed  CAS  Google Scholar 

  2. Åkesson, B., Gronowitz, S., Herslif, B., and Ohlson, R. (1978) Absorption of Stereochemically Defined Acylglycerols in the Rat,Lipids 13, 338–343.

    PubMed  Google Scholar 

  3. Mattson, F.H., and Volpenheim, R.A. (1964) The Digestion and Absorption of Triglycerides,J. Biol. Chem. 239, 2772–2777.

    PubMed  CAS  Google Scholar 

  4. Nestel, P.J., Austin, W., and Foxman, C. (1969) Lipoprotein Lipase Content and Triglyceride Fatty Acid Uptake in Adipose of Rats of Differing Body Weights,J. Lipid Res. 10, 393–387.

    Google Scholar 

  5. Pequignot-Planche, E., DeGasquet, P., Boulange, A., and Tonnu, N.T. (1977) Lipoprotein Lipase Activity at Onset of Development of White Adipose Tissue in Newborn Rats,Biochem. J. 162, 461–463.

    PubMed  CAS  Google Scholar 

  6. Steffan, D.G., Brown, L.J., and Mersmann, H.J. (1978) Ontogenic Development of Swine (Sus domesticus) Adipose Tissue Lipases,Comp. Biochem. Physiol. 59B, 195–198.

    Google Scholar 

  7. Deckelbaum, R.J., Ramakrishnan, R., Eisenberg, S., Olivecrona, T., and Bengtsson-Olivecrona, G. (1992) Triacylglycerol and Phospholipid Hydrolysis in Human Plasma Lipoproteins: Role of Lipoprotein and Hepatic Lipase,Biochemistry 31, 8544–8551.

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths, A.J., Humphreys, S.M., Clark, M.L., Fielding, B.A., and Frayn, K.N. (1994) Immediate Metabolic Availability of Dietary Fat in Combination with Carbohydrate,Am. J. Clin. Nutr. 59, 53–59.

    PubMed  CAS  Google Scholar 

  9. Schultz, F.M., Wylie, M.B., and Johnston, J.M. (1971) The Relationship Between Monoglyceride and Glycerol-3-Phosphate Pathway in Adipose Tissue,Biochem. Biophys. Res. Commun. 45, 246–250.

    Article  PubMed  CAS  Google Scholar 

  10. Breckenridge, W.C., Marai, L., and Kuksis, A. (1969) Triglyceride Structure of Human Milk Fat,Can. J. Biochem. 47, 761–769.

    Article  PubMed  CAS  Google Scholar 

  11. Parodi, P.W. (1982) Positional Distribution of Fatty Acids in Triglycerides from Milk of Several Species of Mammals,Lipids 17, 437–442.

    PubMed  CAS  Google Scholar 

  12. Brockerhoff, H., Hoyle, R.J., and Wolmark, N. (1966) Positional Distribution of Fatty Acids in Triglycerides of Animal Depot Fats,Biochim. Biophys. Acta 116, 67–72.

    PubMed  CAS  Google Scholar 

  13. Christie, W.W., and Moore, J.H. (1970) A Comparison of the Structures of Triglycerides from Various Pig Tissues,Biochim. Biophys. Acta 210, 46–56.

    PubMed  CAS  Google Scholar 

  14. Christie, W.W., and Vernon, R.G. (1975) The Positional Distribution of Fatty Acids Incorporated into Triacylglycerols by Rat Adipose Tissue SlicesIn Vitro, Biochim. Biophys. Res. Commun. 66, 243–249.

    Article  CAS  Google Scholar 

  15. Mattson, F.H., Volpenhein, R.A., and Lutton, E.S. (1964) The Distribution of Fatty Acids in the Triglycerides of Artiodactyla (even-toed animals),J. Lipid Res. 5, 363–365.

    PubMed  CAS  Google Scholar 

  16. Innis, S.M., and Dyer, R. (1995) Palmitic Acid Is Absorbed assn-2 Monopalmitin from Milk and Formula with Rearranged Triacylglycerols and Results in Increased Plasma Triglyceridesn-2 and Cholesteryl Ester Palmitate in Piglets,J. Nutr. 125, 73–81.

    PubMed  CAS  Google Scholar 

  17. Innis, S.M., Dyker, R., and Nelson, C.M. (1994) Evidence That Palmitic Acid Is Absorbed assn-2 Monoacylglycerol from Human Milk by Breast-Fed Infants,Lipids 29, 541–545.

    PubMed  CAS  Google Scholar 

  18. Hrboticky, N., MacKinnon, M.J., and Innis, S.M. (1989) Effect of a Linoleic Acid Infant Formula Feeding on Brain Synaptosmal Lipid Accretion and Enzyme Thermotropic Behavior in the Piglet,J. Lipid Res. 30, 1173–1184.

    PubMed  CAS  Google Scholar 

  19. Hrboticky, N., MacKinnon, M.J., Puterman, M.L., and Innis, S.M. (1990) Effect of a Vegetable Oil Formula Rich in Linoleic Acid Accretion in the Brain, Liver, Plasma and Erythrocytes of Infant Piglets,Am. J. Clin. Nutr. 51, 173–182.

    PubMed  CAS  Google Scholar 

  20. Kuksis, A. (1984) Quantitative and Positional Analysis of Fatty Acids,Lipid Res. Method. 10, 77–131.

    CAS  Google Scholar 

  21. Christie, W.W. (1986) The Positional Distribution of Fatty Acids in Triglycerides,Analysis of Oils and Fats in (Hamilton, R.J., and Russell, J.B., eds.) pp. 313–339, Elsevier Applied Science, London.

    Google Scholar 

  22. Filer, L.J., Mattson, F.H., and Foman, S.J. (1969) Triglyceride Configuration and Fat Absorption by the Human Infant,J. Nutr. 99, 293–298.

    PubMed  CAS  Google Scholar 

  23. Mattson, F.H., Nolen, G.A., and Webb, M.R. (1979) The Absorbability by Rats of Various Triglycerides of Stearic and Oleic Acid and the Effect of Dietary Calcium and Magnesium,J. Nutr. 109, 1682–1687.

    PubMed  CAS  Google Scholar 

  24. Bach, A.C., and Babayan, V.K. (1982) Medium-Chain Triglycerides: An Update,Am. J. Clin. Nutr. 36, 950–962.

    PubMed  CAS  Google Scholar 

  25. Mayorek, N., and Bar-Tana, J. (1983) Medium Chain Fatty Acids as Specific Substrates for Triglyceride Acyltransferase in Cultured Hepatocytes,J. Biol. Chem. 258, 6789–6792.

    PubMed  CAS  Google Scholar 

  26. Innis, S.M., King, J.D., Dyer, R., Quinlan, P., and Diersen-Schade, D. (1993) Adipose Tissue Fatty Acids of Piglets Fed Formulae Varying in Saturated and Monounsaturated Fatty Acids, Linoleic and Linolenic Acid, and with Longer Chain n-3 Fatty Acids from Fish Oil,Nutr. Res. 13, 929–940.

    Article  CAS  Google Scholar 

  27. Jacobsen, B.K., Trygg, K., Hjerman, I., Thomassen, M.S., Real, C., and Norum, K.R. (1983) Acyl Pattern of Adipose Tissue Triglycerides, Plasma Fatty Acids and Diet of a Group of Men Participating in a Primary Coronary Prevention Program (The Oslo Study),Am. J. Clin. Nutr. 38, 906–913.

    PubMed  CAS  Google Scholar 

  28. von Staversen, W.A., Deureberg, P., Katan, M.B., Burema, J., de Groot, L.C.P.G.M., and Hoffmanns, D.A.F. (1986) Validity of the Fatty Acid Composition of Subcutaneous Fat Tissue Microbiopsies as an Estimate of the Long-Term Average Fatty Acid Composition of the Diet of Separate Individuals,Am. J. Epidemiol. 123, 455–463.

    Google Scholar 

  29. Widdowsen, E.M., Dauncey, M.J., and Gairdner, D.M.T. (1975) Body Fat of British and Dutch Infants,Br. Med. J. 1, 653–655.

    Article  Google Scholar 

  30. Bloom, B., Chaidoff, I.L., and Reinhardt, W.O. (1951) Intestinal Lymph as Pathway for Transport of Absorbed Fatty Acids of Different Chain Lengths,J. Biol. Chem., 166, 451–455.

    CAS  Google Scholar 

  31. McDonald, G.B., and Weidman, M. (1987) Partitioning of Polar Fatty Acids into Lymph and Portal Vein After Intestinal Absorption in the Rat,Q. J. Exp. Physiol. 72, 153–159.

    PubMed  CAS  Google Scholar 

  32. Wall, K.M., Diersen-Schade, D., and Innnis, S.M. (1992) Nonessential Fatty Acids in Formula Fat Blends Influence Essential Fatty Acid Metabolism and Composition in Plasma and Organ Lipid Classes,Lipids 27, 1024–1031.

    PubMed  CAS  Google Scholar 

  33. Fredrikson, G., and Belfrage, P. (1983) Positional Specificity of Hormone-Sensitive Lipase from Rat Adipose Tissue,J. Biol. Chem. 258, 14253–14256.

    PubMed  CAS  Google Scholar 

  34. Miller, M.F., Shackelford, S.D., Hayden, K.D., and Reagan, J.O. (1990) Determination of the Alteration in Fatty Acid Profiles, Sensory Characteristics and Carcass Traits of Swine Fed Elevated Levels of Monounsaturated Fats in the Diet,J. Anim. Sci. 68, 1624–1631.

    PubMed  CAS  Google Scholar 

  35. Leray, C., Raclot, T., and Groscolas, R. (1993) Positional Distribution of n-3 Fatty Acids in Triacylglycerols from Rat Adipose Tissue During Fish Oil Feeding,Lipids 28, 279–284.

    PubMed  CAS  Google Scholar 

  36. Chernenko, G.A., Barrowman, J.A., Kean, K.T., Herzberg, G.R., and Keough, K.M.W. (1989) Intestinal Absorption and Lumphatic Transport of Fish Oil (MaxEPA) in the Rat,Biochim. Biophys. Acta 1004, 95–102.

    PubMed  CAS  Google Scholar 

  37. Yang, L.Y., and Kuksis, A. (1991) Apparent Conversion (at 2-monoacylglycerol level) of Phosphatidic Acid and 2-Monoacylglycerol Pathways of Synthesis of Chylomicron Triacylglycerols,J. Lipid Res. 32, 1173–1186.

    PubMed  CAS  Google Scholar 

  38. Barrett, K.E., and Bigby, T.D. (1995) New Roles for Eicosanoids as Regulators of Epithelial Function and Growth,Am. J. Physiol. 10, 153–159.

    CAS  Google Scholar 

  39. Carleton Baybutt, R., Smith, J.E., and Yeh, Y.-Y. (1993) The Effects of Dietary Fish Oil on Alveolar Type II Cell Fatty Acids and Lung Surfactant Phospholipids,Lipids 28, 167–172.

    Google Scholar 

  40. Craig-Schmidt, M.C., Faircloth, S.A., and Weete, J.D. (1987) Modulation of Avian Lung Eicosanoids by Dietary Omega-3 Fatty Acids,J. Nutr. 117, 1197–1206.

    PubMed  CAS  Google Scholar 

  41. Meydani, S.N., Shapiro, A.C., Meydani, M., and Blumberg, J.B. (1992) Lung Eicosanoid Synthesis Is Affected by Age, Dietary Fat and Vitamin E,J. Nutr. 122, 1634–1642.

    Google Scholar 

  42. Zeldin, D.C., Plitman, J.D., Kobayashi, J., Miller, R.F., Snapper, J.R., Falck, J.R., Szarek, J.L., Philpot, R.M., and Capdevilla, J.H. (1995) The Rabbit Pulmonary Cytochrome P450 Arachidonic Acid Metabolic Pathway: Characterization and Significance,J. Clin. Invest. 95, 2150–2160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Innis, S.M., Dyer, R., Quinlan, P.T. et al. Dietary triacylglycerol structure and saturated fat alter plasma and tissue fatty acids in piglets. Lipids 31, 497–505 (1996). https://doi.org/10.1007/BF02522643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522643

Keywords

Navigation