Skip to main content
Log in

Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis ×E. urophylla)

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

To develop a successful protocol forAgrobacterium-mediated transformation in plants it is essential to determine the most efficient bacterial strain/plant genotype interaction. In the present work, we evaluated the susceptibility ofEucalyptus grandis ×E. urophylla to fiveAgrobacterium rhizogenes and twelveA. tumefaciens wildtype strains. The results showed different degrees of virulence, according to the strain tested, indicating that transformation of this eucalypt hybrid by Agrobacterium-derived vectors is possible. All developed tumours showed an autonomous growth when transferred to a hormone-free medium. Some of these tumours formed shoots spontaneously, with a normal phenotype. Polymerase Chain Reaction (PCR) and Southern blot analyses were performed to confirm the absence of the oncogenic T-DNA in plants derived from these shooty tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam S (1986) Ann. Rech. Sylvi. AFOCEL 1986: 7–21.

    Google Scholar 

  • Adam S (1989) Ph.D. Dissertation, University Pierre & Marie Curie. Paris, 154p.

  • Barrueto Cid LP, Illg, RD, Piedrabuena AE (1994) In Vitro Cell. Dev. Biol. 30P: 150–155.

    Google Scholar 

  • Brasileiro ACM, Leplé JC, Muzzin J, Ounnoughi D, Michel MF, Jouanin L (1991) Plant Mol. Biol. 17: 441–452.

    Google Scholar 

  • Brasileiro ACM, Tourneur C, Leplé JC, Combes V, Jouanin L (1992) Transg. Res. 1: 133–141.

    Google Scholar 

  • Depicker A, De Wilde M, De Vos G, De Vos R, van Montagu M, Schell J (1980) Plasmid 3:193–211.

    Google Scholar 

  • Dhaese P, De Greve H, Decraemen H, Schell J, van Montagu M (1979) Nucleic Acids Res. 7: 1837–1849.

    Google Scholar 

  • Drevet C, Brasileiro ACM, Jouanin L (1994) Plant Mol. Biol. 25: 83–90.

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1994) Eucalypt domestication and breeding. Oxford University Press. Oxford, 288p.

  • FAO (1979) Eucalypts for planting. FAO Publications. Rome, 677p

  • Grattapaglia D, Sederoff R (1994) Genetics 137: 1121–1137.

    Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) Plant Cell Rep. 10: 221–224.

    Google Scholar 

  • Hooykaas PJJ, Beijersbergen AGM (1994) Annu. Rev. Phytopathol. 32: 157–179.

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227: 1229–1231.

    Google Scholar 

  • James DJ, Passey AJ, Predieri S, Rugini E (1988) In: Ahuja MR (ed). Somatic cell genetics of woody plants, Kluwer Academic Publishers. Dordrecht, pp. 65–71.

    Google Scholar 

  • Jindal KK, Bhardwaj LN (1986) Indian Forester 112:1121.

    Google Scholar 

  • Jouanin L, Brasileiro ACM, Leplé JC, Pilate G, Cornu D (1993) Ann. Sci. For. 50: 325–336.

    Google Scholar 

  • Mackay J, Séguin A, Lalonde M (1988) Plant Cell Rep. 7: 229–232.

    Google Scholar 

  • Macrae S, van Staden J (1993) Tree Physiol. 12: 411–418.

    Google Scholar 

  • Manders G, Davey MR, Power JB (1992) J. Exp. Bot. 43: 1181–1190.

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Otten L, Canaday J, Gérard JC, Fournier P, Cruozet P, Paulus F (1992) Mol. Plant Microbe Interact. 5: 279–287.

    Google Scholar 

  • Pellegrineschi A, Tepfer D (1993) Plant Sci. 88:113–119.

    Google Scholar 

  • Reis MS, Hedges CS (1975) Status of forest diseases and insects in Latin America. FAO/FORPEST, DI/75.

  • Saito K, Yamazaki M, Murakoshi I (1992) J. Natural Prod. 55: 149–162.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Strobel GA, Nachmias A, Hess WM (1987) Can. J. Bot. 66:2581–2585.

    Google Scholar 

  • Tepfer M, Casse-Delbart F (1987) Microbiol. Sci. 4: 24–28.

    Google Scholar 

  • Teulières C, Marque C, Boudet A-M (1994) In: Bajaj YPS (ed). Biotechnology in agriculture and forestry. Springer-Verlag. Berlin, pp. 289–307.

    Google Scholar 

  • Turgeon R (1982) In: Kahl G, Schell JS (eds). Molecular biology of plant tumors. Academic Press Inc. New York, pp. 391–414.

    Google Scholar 

  • van Slogteren GMS, Hoge JHC, Hooykaas PJJ, Schilperrort RA (1983) Plant Mol. Biol. 2: 321–333.

    Google Scholar 

  • Zupan JR, Zambryski P (1995) Plant Physiol. 107: 1041–1047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. R. Davey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, L.d.O.R., de Andrade, G.M., Barrueto Cid, L.P. et al. Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis ×E. urophylla). Plant Cell Reports 16, 299–303 (1997). https://doi.org/10.1007/BF01088285

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01088285

Key words

Navigation