Skip to main content
Log in

Analysis of radiation-grafted membranes for fuel cell electrolytes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

One of the primary obstacles to be overcome for the development of economical fuel cells is the high cost of the membrane electrolyte. The currently favoured polymer electrolytes consist of poly(tetrafluoroethylene) backbone structures and poly(perfluorosulphonic acid) side chains. In an effort to find lower cost membranes, some radiation-grafted copolymer membranes were investigated. All the membranes contained poly(styrenesulphonic acid) side chains. Three different backbone polymer structures were studied: low-density poly(styrene), poly(tetrafluoroethylene)/poly(perfluoropropylene), and poly(tetrafluoroethylene). The results indicate that the membrane consisting of a poly(tetrafluoroethylene)/poly(styrenesulphonic acid) copolymer is a promising candidate as a fuel-cell electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

transport channel cross-sectional area (cm2)

N A :

Avogadro's number, 6.022×10−23 (mol−1)

c :

concentration (mol cm−3)

d :

sample disc diameter (cm)

D :

diffusion coefficient (cm2s−1)

F :

Faraday's constant (96 487 Cequiv−1

i :

current density (mA cm−2)

k Φ :

electrokinetic permeability (cm2)

K :

water exchange equilibrium constant

K :

partition coefficient of the species (C membrane/C reservoir)

L :

membrane thickness (cm)

m :

membrane weight (mg)

n :

number of mobile species

N :

number of radioactive atoms

N :

molar flux (mol s−1 cm−2)

P :

pressure (atm)

R :

specific resistance (Ω cm−2)

R :

universal gas constant (8 314 J mol−1 K−1)

S 0 :

specific surface (cm2)

T :

absolute temperature (K)

t :

tine (s)

η:

transference number

v :

pore-fluid velocity (cm s−1)

V :

membrane sample volume (cm3)

x :

distance (cm)

z :

charge number

δ:

Kozeny-Carman pore breadth (nm)

θ:

membrane porosity

κ:

effective conductivity (Ω−1 cm−1)

λ:

decay constant (min−1)

μ:

fluid viscosity (g cm−1 s−1)

ρ:

density (g cm−3)

σ:

wall charge density (C cm−2)

Φ:

electric potential (V)

dry:

conditions of dry membrane

H2O:

membrane equilibrated in pure water

j :

ionic species

m:

membrane

wet:

conditions of wet membrane

*:

radiotracer species

COLD:

conditions in the cold reservoir

HOT:

conditions in the hot reservoir

membrane:

conditions inside the membrane

reservoir:

conditions in the reservoir

References

  1. F. Sissine, Fuel Cells for Electric Power Production: Future Potential, Federal Role, and Policy Options, in ‘FUEL CELLS Trends in Research and Application,’ (edited by A. J. Appleby), Hemisphere, New York (1987) pp. 1–18.

    Google Scholar 

  2. A. P. Fickett,Sci. Am. 70 (December 1978).

  3. L. J. Nuttal and J. F. McElroy,J. Soc. Automotive Engineers (1983) pp. 1–7.

  4. R. A. Lemons,J. Power Sources 29 (1990) 252–66.

    Google Scholar 

  5. H. G. Wilson, P. B. MacCready and C. R. Kyle,Sci. Am. (March 1989) 90–7.

  6. Fuel Cell News V (edited by M. Gustein) (4) (December 1988).

  7. A. K. Shukla, K. V. Ramesh and A. M. Kannan,Proc. Indian Acad. Sci. (Chem. Sci.) 97 (3 and 4) (1986) 513–28.

    Google Scholar 

  8. J. P. Hoare, ‘The Electrochemistry of Oxygen,’ J. Wiley & Sons (Interscience), New York (1968) 307.

    Google Scholar 

  9. D. M. Bernardi,J. Electrochem. Soc. 137 (1990) 3344–50.

    Google Scholar 

  10. K. Kishida, “Status and Interest of Japanese Industrial Development of Fuel Cells”, in FUEL CELLS Trends in Research and Application, (1987) 173–90.

  11. P. C. Rieke and N. E. Vanderborgh,J. Electrochem. Soc. 134 (1987) 1099–104.

    Google Scholar 

  12. E. A. Ticianelli, C. R. Derouin and S. Srinivasan,J. Electroanal. Chem. 251 (1988) 275.

    Google Scholar 

  13. E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivasan,J. Electrochem. Soc. 135 (1988) 2209–14.

    Google Scholar 

  14. P. Savage,Chemical Week (march 1987) p. 13.

  15. M. W. Verbrugge and R. F. Hill,J. Phys. Chem. 92 (1988) 6778.

    Google Scholar 

  16. M. W. Verbrugge and R. F. Hill,J. Electrochem. Soc. 137 (1990) 1131–8.

    Google Scholar 

  17. M. W. Verbrugge and R. F. Hill,J. Electrochem. Soc. 137 (1990) 3770–7.

    Google Scholar 

  18. RAIPORE Product and Data Guide, RAI Research Corporation, Hong Island, New York (1988).

    Google Scholar 

  19. R. Helfferich, ‘Ion Exchange,’ McGraw-Hill, New York (1962).

    Google Scholar 

  20. A. Chapiro, ‘Radiation Chemistry of Polymeric Systems,’ Vol XV of ‘High Polymers’, J. Wiley & Sons (Interscience), New York (1962).

    Google Scholar 

  21. M. W. Verbrugge, and R. F. Hill,J. Electrochem. Soc 137 (1990) 886.

    Google Scholar 

  22. J. Jensen, ‘Materials Research for Advanced Solid-State Fuel Cells of the Energy Research Laboratory, Den mark,’ in ‘FUEL CELLS Trends in Research and Application,’ (1987) 145–60.

  23. J. Newman, ‘Electrochemical Systems,’ Prentice-Hall, Englewood Cliffs NJ (1973).

    Google Scholar 

  24. S. W. Capeci, P. N. Pintauro and D. N. Bennion,J. Electrochem. Soc. 136 (1989) 2876.

    Google Scholar 

  25. P. N. Pintauro and D. N. Bennion,I&EC Fundamentals 23 (1984) 234.

    Google Scholar 

  26. R. B. Bird, W. B. Stewart and E. N. Lightfoot, ‘Transport Phenomena,’ J. Wiley & Sons, New York (1960).

    Google Scholar 

  27. N. Lakshminarayanaiah, ‘Transport Phenomena in Membranes,’ Academic Press, London (1969).

    Google Scholar 

  28. R. Schlögl,Ber. Bunsenges. 70 (1966) 400–14.

    Google Scholar 

  29. A. E. Scheidegger, ‘The Physics of Flow Through Porous Media,’ 3rd ed., University of Toronto Press, Toronto (1974) pp. 141–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzman-Garcia, A.G., Pintauro, P.N., Verbrugge, M.W. et al. Analysis of radiation-grafted membranes for fuel cell electrolytes. J Appl Electrochem 22, 204–214 (1992). https://doi.org/10.1007/BF01030179

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030179

Keywords

Navigation