Skip to main content

Polymer Electrolytes for Fuel Cells

  • Living reference work entry
  • First Online:
Handbook of Energy Materials

Abstract

A fuel cell generates electricity cleanly and efficiently by utilizing the chemical energy contained in hydrogen or other fuels. Fuel cells are remarkable in their application versatility; they may be used for a wide range of systems, from huge utility power plants to mobile phones, and they can operate on a wide variety of fuels and feedstocks. Current fuel cell systems are still inefficient to be commercially viable, as cost, performance, and durability remain important challenges in the fuel cell industry. As a key component in fuel cells, polymer electrolyte membrane (PEM) provides channels for ion transport and prevents fuel crossover, which plays a critical role in improving performance and lowering the cost of the fuel cell. This chapter discusses the polymer electrolytes used in fuel cells, specifically proton-exchange membrane fuel cell (PEMFC) and anion-exchange membrane fuel cell (AEMFC) systems, as well as their characteristics. The two most extensively used polymer electrolyte for PEMFC and AEMFC applications, respectively, are perfluorosulfonic acid ionomers, represented by Nafion, and quaternary ammonium-functionalized hydrocarbons, represented by Tokuyama A201. Their ion transport mechanisms and methods of preparation are introduced. Along with the many other types of materials being investigated as potential PEM, strategies for overcoming major challenges and developments in ion-exchange polymer electrolytes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • E. Abouzari-Lotf, M. Zakeri, M.M. Nasef, et al., Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 412, 238–245 (2019)

    Article  CAS  Google Scholar 

  • N. Ali, F. Ali, A. Said, et al., Synthesis of clay-armored coatable sulfonated polyimide nanocomposites as robust polyelectrolyte membranes. J. Appl. Polym. Sci. 138, 51310 (2021)

    Article  CAS  Google Scholar 

  • F. Altaf, R. Gill, R. Batool, et al., Synthesis and applicability study of novel poly(dopamine)-modified carbon nanotubes based polymer electrolyte membranes for direct methanol fuel cell. J. Environ. Chem. Eng. 8, 104118 (2020)

    Article  CAS  Google Scholar 

  • H. Askaripour, Effect of operating conditions on the performance of a PEM fuel cell. Int. J. Heat Mass Transf. 144, 118705 (2019)

    Article  CAS  Google Scholar 

  • A.H. Avci, C. Van Goethem, T. Rijnaarts, et al., Tuning the electrochemical properties of novel asymmetric integral sulfonated polysulfone cation exchange membranes. Molecules 26, 265 (2021)

    Article  CAS  Google Scholar 

  • H. Beydaghi, M. Javanbakht, A. Bagheri, et al., Novel nanocomposite membranes based on blended sulfonated poly(ether ether ketone)/poly(vinyl alcohol) containing sulfonated graphene oxide/Fe3O4 nanosheets for DMFC applications. RSC Adv. 5, 74054–74064 (2015)

    Article  CAS  Google Scholar 

  • L.G. Boutsika, A. Enotiadis, I. Nicotera, et al., Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int. J. Hydrog. Energy 41, 22406–22414 (2016)

    Article  CAS  Google Scholar 

  • M.Y. Chia, H.S. Thiam, L.K. Leong, et al., Study on improvement of the selectivity of proton exchange membrane via incorporation of silicotungstic acid-doped silica into SPEEK. Int. J. Hydrog. Energy 45, 22315–22323 (2020)

    Article  CAS  Google Scholar 

  • Y.-K. Choe, C. Fujimoto, K.-S. Lee, et al., Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: A computational and experimental study. Chem. Mater. 26, 5675–5682 (2014)

    Article  CAS  Google Scholar 

  • M. Choi, M. Kim, Y.-J. Sohn, et al., Development of preheating methodology for a 5 kW HT-PEMFC system. Int. J. Hydrog. Energy 46, 36982–36994 (2021)

    Article  CAS  Google Scholar 

  • D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018)

    Article  CAS  Google Scholar 

  • M.L. Di Vona, E. Sgreccia, M. Tamilvanan, et al., High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: Thermal stability, hydration level and mechanical properties. J. Membr. Sci. 354, 134–141 (2010)

    Article  CAS  Google Scholar 

  • K. Divya, M.S. Sri Abirami Saraswathi, S. Alwarappan, et al., Sulfonated poly (ether sulfone)/poly (vinyl alcohol) blend membranes customized with tungsten disulfide nanosheets for DMFC applications. Polymer 155, 42–49 (2018)

    Article  CAS  Google Scholar 

  • J. Fu, J. Qiao, X. Wang, et al., Alkali doped poly(vinyl alcohol) for potential fuel cell applications. Synth. Met. 160, 193–199 (2010)

    Article  CAS  Google Scholar 

  • G.G. Gagliardi, A. Ibrahim, D. Borello, et al., Composite polymers development and application for polymer electrolyte membrane technologies-a review. Molecules 25, 1712 (2020)

    Article  CAS  Google Scholar 

  • K.F.L. Hagesteijn, S. Jiang, B.P. Ladewig, A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 53, 11131–11150 (2018)

    Article  CAS  Google Scholar 

  • S.S. He, A.L. Strickler, C.W. Frank, A semi-interpenetrating network approach for dimensionally stabilizing highly-charged anion exchange membranes for alkaline fuel cells. ChemSusChem 8, 1472–1483 (2015)

    Article  CAS  Google Scholar 

  • D. Henkensmeier, M. Najibah, C. Harms, et al., Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis. J. Electrochem. Energ. Conv. Stor. 18 (2020)

    Google Scholar 

  • D.U. Imaan, F.Q. Mir, B. Ahmad, Proton exchange membrane based on poly (vinyl alcohol) as support and alpha alumina as filler and its performance in direct methanol fuel cell. J. Environ. Chem. Eng. 9, 106119 (2021)

    Article  CAS  Google Scholar 

  • K. Jetsrisuparb, S. Balog, C. Bas, et al., Proton conducting membranes prepared by radiation grafting of styrene and various comonomers. Eur. Polym. J. 53, 75–89 (2014)

    Article  CAS  Google Scholar 

  • S. Jiang, H. Sun, H. Wang, et al., A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 282, 130817 (2021)

    Article  CAS  Google Scholar 

  • P. Kallem, N. Yanar, H. Choi, Nanofiber-based proton exchange membranes: Development of aligned electrospun nanofibers for polymer electrolyte fuel cell applications. ACS Sustain. Chem. Eng. 7, 1808–1825 (2019)

    Article  CAS  Google Scholar 

  • X. Ke, M. Drache, U. Gohs, et al., Preparation of polymer electrolyte membranes via radiation-induced graft copolymerization on poly(ethylene-alt-tetrafluoroethylene) (ETFE) using the Crosslinker N,N'-Methylenebis(acrylamide). Membranes (Basel) 8, 102 (2018)

    Article  CAS  Google Scholar 

  • K.S. Khoo, W.Y. Chia, K. Wang, et al., Development of proton-exchange membrane fuel cell with ionic liquid technology. Sci. Total Environ. 793, 148705 (2021)

    Article  CAS  Google Scholar 

  • D.J. Kim, B.-N. Lee, S.Y. Nam, Characterization of highly sulfonated PEEK based membrane for the fuel cell application. Int. J. Hydrog. Energy 42, 23768–23775 (2017)

    Article  CAS  Google Scholar 

  • C. Li, Z. Yang, X. Liu, et al., Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs). Int. J. Hydrog. Energy 42, 28567–28577 (2017)

    Article  CAS  Google Scholar 

  • J. Lin, X. Yan, G. He, et al., Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly (1, 2-dimethy-3-allylimidazolium) for anion exchange membranes. Electrochim. Acta 257, 9–19 (2017)

    Article  CAS  Google Scholar 

  • Q. Liu, Z. Li, D. Wang, et al., Metal organic frameworks modified proton exchange membranes for fuel cells. Front. Chem. 8, 694 (2020)

    Article  CAS  Google Scholar 

  • Y. Lu, A.A. Armentrout, J. Li, et al., A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. J. Mater. Chem. A 3, 13350–13356 (2015)

    Article  CAS  Google Scholar 

  • G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)

    Article  CAS  Google Scholar 

  • S.A. Muhmed, J. Jaafar, S.S. Daud, et al., Improvement in properties of nanocrystalline cellulose/poly (vinylidene fluoride) nanocomposite membrane for direct methanol fuel cell application. J. Environ. Chem. Eng. 9, 105577 (2021)

    Article  CAS  Google Scholar 

  • A. Muthumeenal, M.S.A. Saraswathi, D. Rana, et al., Fabrication and electrochemical properties of highly selective SPES/GO composite membranes for direct methanol fuel cells. J. Environ. Chem. Eng. 5, 3828–3833 (2017)

    Article  CAS  Google Scholar 

  • M.M. Nasef, T. Fujigaya, E. Abouzari-Lotf, et al., Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level. Int. J. Hydrog. Energy 41, 6842–6854 (2016)

    Article  CAS  Google Scholar 

  • S. Nir, T. Undabeytia, D. Yaron-Marcovich, et al., Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: Interaction between phenyl rings. Environ. Sci. Technol. 34, 1269–1274 (2000)

    Article  CAS  Google Scholar 

  • M. Pan, C. Pan, C. Li, et al., A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sust. Energ. Rev. 141, 110771 (2021)

    Article  CAS  Google Scholar 

  • S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010)

    Article  CAS  Google Scholar 

  • Y. Prykhodko, K. Fatyeyeva, L. Hespel, et al., Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J. 409, 127329 (2021)

    Article  CAS  Google Scholar 

  • E. Quartarone, S. Angioni, P. Mustarelli, Polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review. Materials (Basel) 10, 687 (2017)

    Article  CAS  Google Scholar 

  • G. Rambabu, D.B. Santoshkumar, F. FML, Carbon nanocomposite membrane electrolytes for direct methanol fuel cells-a concise review. Nanomaterials (Basel) 9, 1292 (2019)

    Article  CAS  Google Scholar 

  • N.A. Rosli, K.S. Loh, W.Y. Wong, et al., Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. Int. J. Mol. Sci. 21, 632 (2020)

    Article  CAS  Google Scholar 

  • S. RRR, W. R, M. K et al., Recent progress in the development of aromatic polymer-based proton exchange membranes for fuel cell applications. Polymers 12, 1061 (2020)

    Article  CAS  Google Scholar 

  • C. Simari, E. Lufrano, A. Brunetti, et al., Polysulfone and organo-modified graphene oxide for new hybrid proton exchange membranes: A green alternative for high-efficiency PEMFCs. Electrochim. Acta 380, 138214 (2021)

    Article  CAS  Google Scholar 

  • X. Sun, S.C. Simonsen, T. Norby, et al., Composite membranes for high temperature PEM fuel cells and electrolysers: A critical review. Membranes (Basel), 21, 9 (2019)

    Google Scholar 

  • Tsen WC (2020) Hydrophilic TiO2 decorated carbon nanotubes/sulfonated poly(ether ether ketone) composite proton exchange membranes for fuel cells. Poly. Eng. Sci. 60

    Google Scholar 

  • C. Vilela, N. Sousa, R.J.B. Pinto, et al., Exploiting poly(ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass Bioenergy 100, 116–125 (2017)

    Article  CAS  Google Scholar 

  • S. Wang, P. Sun, Z. Li, et al., Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor. Int. J. Hydrog. Energy 43, 9994–10003 (2018a)

    Article  CAS  Google Scholar 

  • Y. Wang, H. Wan, D. Wang, et al., Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane. Fib. Poly. 19, 11–21 (2018b)

    Article  CAS  Google Scholar 

  • Y.J. Wang, J. Qiao, R. Baker, et al., Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 42, 5768–5787 (2013)

    Article  CAS  Google Scholar 

  • F. Xu, Y. Su, B. Lin, Progress of alkaline anion exchange membranes for fuel cells: The effects of micro-phase separation. Front. Mater. 7, 83 (2020)

    Article  Google Scholar 

  • Y. Yagizatli, B. Ulas, A. Cali, et al., Improved fuel cell properties of Nano-TiO2 doped poly(Vinylidene fluoride) and phosphonated poly(vinyl alcohol) composite blend membranes for PEM fuel cells. Int. J. Hydrog. Energy 45, 35130–35138 (2020)

    Article  CAS  Google Scholar 

  • B. Yarar Kaplan, A.C. KirlioÄŸlu, E. JamÄ°l, et al., Radiation-grafted polymer electrolyte membranes for fuel cells. Hacettepe J. Biol. Chem. 45, 483–506 (2020)

    Google Scholar 

  • L. Yue, Y. Xie, Y. Zheng, et al., Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos. Sci. Technol. 145, 122–131 (2017)

    Article  CAS  Google Scholar 

  • B. Zhang, J. Ni, X. Xiang, et al., Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes. J. Power Sources 337, 110–117 (2017)

    Article  CAS  Google Scholar 

  • H. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112, 2780–2832 (2012)

    Article  CAS  Google Scholar 

  • J. Zhang, L. Liu, Y. Liu, et al., Poly(vinyl alcohol)/Sulfosuccinic acid (PVA/SSA) as proton-conducting membranes for fuel cells: Effect of cross-linking and plasticizer addition. ECS Trans. 53, 29–34 (2013)

    Article  CAS  Google Scholar 

  • J. Zhou, J. Cao, Y. Zhang, et al., Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes. Renew. Sust. Energ. Rev. 138, 110660 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui San Thiam .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thiam, H.S., Ng, W.W., Teoh, H.C. (2022). Polymer Electrolytes for Fuel Cells. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics