Skip to main content
Log in

Reflections on higher mammalian phylogenetics

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

For well over a decade, the higher-level relationships of mammals has been the focus of intensive and broad-ranging investigations. The sources of evidence drawn upon for this purpose are both traditional (e.g., paleontology, skeletal morphology) and newly sampled (e.g., comparative gene sequencing). A basic methodology, nonetheless, pervades this diversity of sampling. Issues that concern all types of data include the assumptions for recognizing homology, the techniques for building trees, the justification of parsimony and weighting, and the means of evaluating and comparing different results. In some areas (e.g., paleontology, molecular comparisons), we have been continual or even explosive expansion of the data base. In other areas (e.g., comparative behavior, physiology, or comparisons involving many aspects of nonskeletal morphology), the expansion has been far less dramatic. Codifying large arrays of characters is no substitute for penetrating studies of comparative form, function, and ontogeny or careful sampling of a diversity of genes. It is hoped that the latter emphases are maintained and nourished. The results of all this recent activity show a mixed profile of resolution for higher-level patterns of phylogeny. Particularly, the higher eutherian mammal radiation still presents many problems. Such challenges, however, have attracted an unprecedented level of synthesis and interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adkins, R. M., and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta.Proc. Natl. Acad. Sci. 88 1–5.

    Google Scholar 

  • Allard, M. W., Miyamoto, M. M., and Honeycutt, R. L. (1991). Tests for rodent polyphyly.Nature 353 610–611.

    Google Scholar 

  • Ammerman, L. K., and Hillis, D. M. (1990). Relationships within archontan mammals based on 12S r RNA gene sequence.Am. Zool. 30: 50A.

    Google Scholar 

  • Ammerman, L. K., and Hillis, D. M. (1992). A molecular test of bat relationships: Monophyly or diphyly?Syst. Biol. 41 222–232.

    Google Scholar 

  • Aplin, K., and Archer, M. (1987). Recent advances in marsupial systematics, with a new syncretic classification. InPossums and Opossums: Studies in Evolution, Vol. 1, M. Archer, ed., pp. xv-lxxii, Roy. Zool. Soc. NSW, Sydney.

    Google Scholar 

  • Archer, M., Flannery, F., Ritchie, A., and Molnar, R. E. (1985). First Mesozoic mammal from Australia: An early Cretaceous monotreme.Nature 318 363–366.

    Google Scholar 

  • Avery, O. T., McLeod, C. M., and McCarthy, M. (1944). Studies on the chemical nature of substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III.J. Exp. Med. 79 137–158.

    Google Scholar 

  • Bailey, W. J., Slightom, J. L., and Goodman, M. (1992). Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ε-globin gene.Science 256 86–89.

    Google Scholar 

  • Baker, R. J., Novacek, M. J., and Simmons, N. B. (1991). On the monophyly of bats.Syst. Zool. 40 216–231.

    Google Scholar 

  • Bauchot, R., and Stephan, H. (1966). Données nouvelles sur l'éncephalisation des insectivores et des prosimiens.Mammalia 30 160–196.

    Google Scholar 

  • Beard, K. C. (1990). Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera).Nature 345 340–341.

    Google Scholar 

  • Blainville, H. M. D. (1816). Prodome d'une nouvelle distribution systématique de règne animal.Bull. Soc. Philom. 1816 67–81.

    Google Scholar 

  • Bramble, D. M. (1978). Origin of the mammalian feeding complex: Models and mechanisms.Paleobiology 4 271–301.

    Google Scholar 

  • Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA.Proc. Natl. Acad. Sci. 76 1967–1971.

    Google Scholar 

  • Brown, W. M., Prager, E. M., Wang, A., and Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution.J. Mol. Evol. 18 225–239.

    Google Scholar 

  • Carroll, R. L. (1988).Vertebrate Paleontology and Evolution, W. H. Freeman, New York.

    Google Scholar 

  • Conroy, G. C., and Wible, J. R. (1978). Middle ear morphology ofLemur variegatus: Some implications for primate paleontology.Folia Primatol. 29 81–85.

    Google Scholar 

  • Coppinger, R. P., and Smith, C. K. (1990). A model for understanding the evolution of mammalian behavior. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 335–374, Plenum Press, New York.

    Google Scholar 

  • Cracraft, J., and Helm-Bychowski, K. (1991). Parsimony and phylogenetic inference using DNA sequences: Some methodological strategies. InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 184–220, Oxford University Press, New York, London.

    Google Scholar 

  • Crompton, W. A., and Jenkins, F. A. (1979). Origin of mammals. InMesozoic Mammals. The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 59–73, University of California Press, Berkeley.

    Google Scholar 

  • Cuvier, G. (1817).Le Règne Animal, Vol. 1, Déterville, Paris.

    Google Scholar 

  • Davis, D. D. (1955). Masticatory apparatus in the spectacled bearTremarctos ornatus.Fieldiana Zool. 37 24–46.

    Google Scholar 

  • De Jong, W. W. (1982). Eye lens proteins and vertebrate phylogeny. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 75–114, Plenum Press, New York.

    Google Scholar 

  • DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. (1992). DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications.Science 257 1933–1936.

    Google Scholar 

  • Donoghue, M., Doyle, J., Gauthier, J., Kluge, A., and Rowe, T. (1989). The importance of fossils in phylogeny reconstruction.Annu. Rev. Ecol. Syst. 20 431–460.

    Google Scholar 

  • Edinger, T. (1964). Midbrain exposure and overlap in mammals.Am. Zool. 4 5–19.

    Google Scholar 

  • Eisenberg, J. F. (1975). Phylogeny, behavior, and ecology in the Mammalia. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 47–68, Plenum Press, New York.

    Google Scholar 

  • Eisenberg, J. F. (1982).The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior, University of Chicago Press, Chicago.

    Google Scholar 

  • Eldredge, N., and Cracraft, J. (1980).Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.

    Google Scholar 

  • Faith, D. P., and Cranston, P. S. (1991). Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure.Cladistics 7 1–28.

    Google Scholar 

  • Farris, J. S. (1988). HENNIG 86, Version 1.5, Distributed by the author, 41 Admiral Street, Port Jefferson Station, NY.

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading.Syst. Zool. 27 401–410.

    Google Scholar 

  • Gall, J. G. (1981). Chromosome structure and the c-value paradox.J. Cell Biol. 91 3–14.

    Google Scholar 

  • Gaupp, E. (1913). Die Reichertsche Theorie (Hammer-, Amboss- und Kieferfrage).Arch. Anat. Entwicklungs. 1912 1–416.

    Google Scholar 

  • Gauthier, J., Kluge, A. G., and Rowe, T. (1988). Amniote phylogeny and the importance of fossils.Cladistics 4 105–209.

    Google Scholar 

  • Gingerich, P. D. (1986). Temporal scaling of molecular evolution in primates and other mammals.Mol. Biol. Evol. 3 205–221.

    Google Scholar 

  • Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., and Zurawski, G. (1990). Chloroplast DNA sequence from a Miocene Magnolia species.Nature 344 656–658.

    Google Scholar 

  • Goodman, M. (1975). Protein sequence and immunological specificity. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 219–248, Plenum Press, New York.

    Google Scholar 

  • Goodman, M. (1989). Emerging alliance of phylogenetic systematics and molecular biology: A new age of exploration. InThe Hierarchy of Life, Nobel Symposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 43–61, Elsevier, Amsterdam.

    Google Scholar 

  • Goodman, M., and Moore, G. W. (1971). Immunodiffusion in the systematics of primates. I. The Catarrhini.Syst. Zool. 20 19–62.

    Google Scholar 

  • Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E. (1982). Amino acid sequence evidence on the phylogeny of primates and other eutherians. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 115–191, Plenum Press, New York.

    Google Scholar 

  • Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987). Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 141–176, Cambridge University Press, Cambridge.

    Google Scholar 

  • Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351 649–652.

    Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals.Bull. Am. Mus. Nat. Hist. 27 1–524.

    Google Scholar 

  • Gregory, W. K. (1947). The monotremes and the palimpsest theory.Bull. Am. Mus. Nat. Hist. 88 1–52.

    Google Scholar 

  • Hayasaka, K., Gojobori, T., and Horai, S. (1988). Molecular phylogeny and evolution of primate mitochondrial DNA.Mol. Biol. Evol. 5 626–644.

    Google Scholar 

  • Hecht, M. K. (1976). Phylogenetic inference and methodology as applied to the vertebrate record.Evol. Biol. 9 335–363.

    Google Scholar 

  • Hennig, W. (1950).Grundzüge einer Theorie der phylogenetischen Systematik, Deutscher Zentralverlag, Berlin.

    Google Scholar 

  • Hennig, W. (1966).Phylogenetic Systematics, University of Illinois Press, Urbana.

    Google Scholar 

  • Hillis, D. M. (1991). Discrimination between phylogenetic signal and random noise in DNA sequences. InPhylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 278–294, Oxford University Press, New York.

    Google Scholar 

  • Hillis, D. M., and Dixon, M. T. (1989). Vertebrate phylogeny: Evidence from 28S ribosomal DNA sequences. InThe Hierarchy of Life, Nobel Symposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 355–367, Elsevier, Amsterdam.

    Google Scholar 

  • Hull, D. L. (1988).Science as a Process, University of Chicago Press, Chicago.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals.J. Mol. Evol. 32 128–144.

    Google Scholar 

  • Janis, C. M., and Scott, K. M. (1988). The phylogeny of the Ruminantia (Artiodactyla, Mammalia). InThe Phylogeny and Classification of Tetrapods, Vol. 2, M. J. Benton, ed., pp. 273–282, Clarendon Press, Oxford.

    Google Scholar 

  • Jenkins, F. A. (1974). Tree shrew locomotion and the origins of primate arborealism. InPrimate Locomotion, F. A. Jenkins, ed., pp. 85–115, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Kemp, T. S. (1983). The relationships of mammals.Zool. J. Linn. Soc. 77 353–384.

    Google Scholar 

  • Kielan-Jaworowska, Z. (1971). Results of the Polish-Mongolian paleontological expeditions. III. Skull structure and affinities of the Multituberculata.Paleaontol. Polon. 25 5–41.

    Google Scholar 

  • Kielan-Jaworowska, Z., Bown, T. M., and Lillegraven, J. A. (1979). Eutheria. InMesozoic Mammals. The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworoska, and W. A. Clemens, eds., pp. 221–259, University of California Press, Berkeley.

    Google Scholar 

  • Kielan-Jaworowska, Z., Crompton, W. A., and Jenkins, F. A. (1987). The origin of egg-laying mammals.Nature 326 871–873.

    Google Scholar 

  • Kirsch, J. A. W. (1982). The builder and the bricks: Notes toward a philosophy of characters. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 587–594, Roy. Zool. Soc. NSW, Sydney.

    Google Scholar 

  • Kirsch, J. A. W., and Archer, M. (1982). Polythetic cladistics, or, when parsimony's not enough: The relationships of carnivorous marsupials. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 595–619, Roy. Zool. Soc. NSW, Sydney.

    Google Scholar 

  • Kirsch, J. A. W., and Johnson, J. I. (1983). Phylogeny through brain traits: Trees generated by neural characters.Brain Behav. Evol. 22 60–69.

    Google Scholar 

  • Kirsch, J. A. W., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of the American marsupialDromiciops australis.Proc. Natl. Acad. Sci. 88 10465–10469.

    Google Scholar 

  • Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes).Syst. Zool. 38 7–25.

    Google Scholar 

  • Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences.Syst. Zool. 40 117–130.

    Google Scholar 

  • Krause, D., and Carlson, S. J. (1987). Prismatic enamel in multituberculate mammals: Tests of homology and polarity.J. Mammal. 68 755–765.

    Google Scholar 

  • Kühne, W. G. (1973). The systematic position of monotremes reconsidered (Mammalia).Zeitschr. Morph. Tiere 75 59–64.

    Google Scholar 

  • Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony.Mol. Biol. Evol. 4 167–191.

    Google Scholar 

  • Lauder, G. (1981). Form and function: Structural analysis in evolutionary morphology.Paleobiology 7 430–442.

    Google Scholar 

  • Leche, W. (1886). Ueber die SäugetiergattungGaleopithecus. Eine morphologische Untersuchung.K. Svenska Wetenskap. Akad. 21 1–92.

    Google Scholar 

  • Lillegraven, J. A. (1969). Latest Cretaceous mammals of the upper part of the Edmonton Formation of Alberta, Canada, and a review of the marsupial-placenta dichotomy in mammalian evolution.Univ. Kans. Paleontol. Contrib. 50 1–122.

    Google Scholar 

  • Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A., eds. (1979).Mesozoic Mammals. The First Two-Thirds of Mammalian History, University of California Press, Berkeley.

    Google Scholar 

  • Luckett, W. P. (1975). Ontogeny of the fetal membranes and placenta: Their bearing on primate phylogeny. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 157–182, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. InMajor Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 439–516, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P. (1980). The suggested evolutionary relationships and classification of tree shrews. InComparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 3–31, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from dentition and placentation. InEvolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. InMammal Phylogeny, Vol. 1. Mesozoic Differentiation, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985).Evolutionary Relationships among Rodents, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations.J. Mammal. Evol. (in press).

  • Luckett, W. P., and Szalay, F. S. (eds.) (1975).Phylogeny of the Primates, Plenum Press, New York.

    Google Scholar 

  • MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. InMammal Phylogeny, Vol. 2. Placentals, Springer Verlag, New York (in press).

    Google Scholar 

  • Maddison, D. R. (1991). The discovery and importance of multiple islands of most-parsimonious trees.Syst. Zool. 40 315–328.

    Google Scholar 

  • Maier, W. (1987a). The ontogenetic development of the orbitotemporal region in the skull ofMonodelphis domestica (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. InMorphogenesis of the Mammalian Skull, H. J. Kuhn and U. Zeller, eds., pp. 71–90, Mammalia Depicta, Heft 13.

  • Maier, W. (1987b). Der Processus angularis beiMonodelphis domestica (Didelphidae, Marsupialia) und seine Beziehungen zum Mittelohr: Eine ontogenetische and evolutions-morphologische Untersuchung.Gegenbaurs Morphol. Jahrb. 133 123–161.

    Google Scholar 

  • Maier, W. (1989). Morphologische Untersuchungen am Mittelohr der Marsupialia.Zeitschr. Zool. Syst. Evolforsch. 27 149–168.

    Google Scholar 

  • Marshall, L. G. (1979). Evolution of metatherian and eutherian (mammalian) characters: A review based on cladistic methodology.Zool. J. Linn. Soc. 66 369–410.

    Google Scholar 

  • Marshall, L. G., and de Muizon, C. (1988). The dawn of the Age of Mammals in South America.Natl. Geogr. Res. 4 23–55.

    Google Scholar 

  • Marshall, L. G., Case, J. A., and Woodburne, M. P. (1990). Phylogenetic relationships of the families of marsupials. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 433–505, Plenum Press, New York.

    Google Scholar 

  • Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, middle Eocene.Mem. Am. Mus. Nat. Hist. 9 291–567.

    Google Scholar 

  • McDowell, S. B. (1958). The Greater Antillean insectivores.Bull. Am. Mus. Nat. Hist. 115 113–214.

    Google Scholar 

  • McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.

    Google Scholar 

  • McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–93, Cambridge University Press, Cambridge.

    Google Scholar 

  • McKenna, M. C. (1992). The alpha crystallin A chain of the eye lens and mammalian phylogeny.Ann. Zool. Fenn. 28 349–360.

    Google Scholar 

  • Mindell, D. P., Dick, C. W., and Baker, R. J. (1991). Phylogenetic relationships among megabats, microbats, and primates.Proc. Natl. Acad. Sci. 88 10322–10326.

    Google Scholar 

  • Miyamoto, M. M., and Boyle, S. M. (1989). The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. InThe Hierarchy of Life, Nobel Syposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 437–452, Elsevier, Amsterdam.

    Google Scholar 

  • Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35 230–240.

    Google Scholar 

  • Mossman, H. W. (1937). Comparative morphogenesis of the fetal membranes and accessory uterine structures.Carnegie Inst. Contrib. Embryol. 26 129–246.

    Google Scholar 

  • Mossman, H. W. (1987).Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Nelson, G., and Platnick, N. (1981).Systematics and Biogeography: Cladistics and Vicariance, Columbia University Press, New York.

    Google Scholar 

  • Nixon, K. C., and Davis, J. I. (1991). Polymorphic taxa, missing values and cladistic analysis.Cladistics 7 233–241.

    Google Scholar 

  • Nixon, K. C., and Wheeler, Q. D. (1992). Extinction and the origin of species. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 119–143. Columbia University Press, New York.

    Google Scholar 

  • Norell, M. A., and Novacek, M. J. (1992). The fossil record and evolution: Comparing cladistic and paleontologic evidence for vertebrate history.Science 255 1690–1693.

    Google Scholar 

  • Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. InComparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 35–93, Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals.Bull. Am. Mus. Nat. Hist. 183 1–111.

    Google Scholar 

  • Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 507–543.

  • Novacek, M. J. (1991). “All tree histograms” and the evaluation of cladistic evidence: some ambiguities.Cladistics 7 345–349.

    Google Scholar 

  • Novacek, M. J. (1992a). Mammalian phylogeny: Shaking the tree.Nature 356 121–125.

    Google Scholar 

  • Novacek, M. J. (1992b). Fossils as critical data for phylogeny. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 46–88, Columbia University Press, New York.

    Google Scholar 

  • Novacek, M. J. (1992c). Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals.Syst. Biol. 41 58–73.

    Google Scholar 

  • Novacek, M. J. (1993a). Morphological and molecular inroads to phylogeny. InProceedings of the Field Museum Spring Symposium 1992, O. Rieppel, ed., University of Chicago Press, Chicago (in press).

    Google Scholar 

  • Novacek, M. J. (1993b). Patterns of diversity of the mammalian skull. InThe Vertebrate Skull, Vol. 2, J. Hanken and B. K. Hall, eds., University of Chicago Press (in press).

  • Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: Morphological evidence.Cladistics 2 257–287.

    Google Scholar 

  • Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. InThe Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.

    Google Scholar 

  • Pascual, R., Archer, M., Jaureguizar, E. O., Prado, J. L., Godthelp, H., and Hand, S. J. (1992). First discovery of monotremes in South America.Nature 356 704–706.

    Google Scholar 

  • Patterson, C. (1980). Methods of paleobiogeography. InVicariance Biogeography: A Critique, G. J. Nelson and D. E. Rosen, eds., pp. 446–500, Columbia University Press, New York.

    Google Scholar 

  • Patterson, C. (1987). Introduction. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 1–22, Cambridge University Press, Cambridge.

    Google Scholar 

  • Pettigrew, J. D. (1986). Flying primates? Megabats have the advanced pathway from eye to midbrain.Science 231 1304–1306.

    Google Scholar 

  • Pettigrew, J. D. (1991a). Wings or brain? Convergent evolution in the origins of bats.Syst. Zool. 40 199–216.

    Google Scholar 

  • Pettigrew, J. D. (1991b). A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons.Syst. Zool. 40 231–239.

    Google Scholar 

  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates).Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 325 489–559.

    Google Scholar 

  • Platnick, N. I., Griswold, C. E., and Coddington, J. A. (1991). On missing entries in cladistic analysis.Cladistics 7 337–343.

    Google Scholar 

  • Presley, R. (1979). The primitive course of the internal carotid artery in mammals.Acta Anat. 103 238–244.

    Google Scholar 

  • Prothero, D. R., and Schoch, R. (1989). Origin and evolution of the Perissodactyla: Summary and synthesis. InThe Evolution of Perissodactyls, D. Prothero and R. Schoch, eds., pp. 504–529, Oxford University Press, New York.

    Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of ungulates. InThe Phylogeny and Classification of the Tetrapods, Vol.2, M. J. Benton, ed., p. 234.

    Google Scholar 

  • Queiroz, de, K., and Donoghue, M. J. (1988). Phylogenetic systematics and the species problem.Cladistics 4 317–338.

    Google Scholar 

  • Queiroz, de, K., and Donoghue, M. J. (1990). Phylogenetic systematics or Nelson's version of cladistics?Cladistics 6 61–75.

    Google Scholar 

  • Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota, and fossil “edentates”: The morphological evidence. InMammal Phylogeny, Vol. 2. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).

    Google Scholar 

  • Rougier, G. W., Wible, J. R., and Hopson, J. A. (1992). Reconstruction of the cranial vessels in the Early Cretaceous mammalVincelestes neuquenianus: Implications for the evolution of the mammalian cranial vascular system.J. Vert. Paleont. 12 188–216.

    Google Scholar 

  • Rowe, T. (1988). Definition, diagnosis, and origin of Mammalia.J. Vert. Paleont. 8 241–264.

    Google Scholar 

  • Rowe, T., and Greenwald, N. R. (1987). The phylogenetic position and origin of Multituberculata.J. Vert. Paleo. (Abstr.) 7 24A-25A.

    Google Scholar 

  • Sanderson, M., and Donoghue, M. (1989). Patterns of variation in levels of homoplasy.Evolution 43 1781–1795.

    Google Scholar 

  • Sarich, W. M. (1969). Pinniped origins and the rate of evolution of carnivore albumins.Syst. Zool. 18 286–295.

    Google Scholar 

  • Sarich, W. M. (1985). Rodent macromolecular systematics. InEvolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 423–452, Plenum Press, New York.

    Google Scholar 

  • Shoshani, J. (1993). Hyracoidea-Tethytheria affinity based on myological data. InMammal Phylogeny, Vol. 2. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).

    Google Scholar 

  • Sidow, A., and Wilson, A. C. (1991). Compositional statistics evaluated by computer simulation. InPhylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 129–146, Oxford University Press, New York.

    Google Scholar 

  • Simmons, N. B., Novacek, M. J., and Baker, R. J. (1991). Approaches, methods, and the future of the chiropteran monophyly controversy: A reply to J. D. Pettigrew.Syst. Zool. 40 239–243.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Am. Mus. Nat. Hist. 85 1–350.

    Google Scholar 

  • Simpson, G. G. (1971). Concluding remarks: Mesozoic mammals revisited.Linn. Soc. Zool. J. 50 181–198.

    Google Scholar 

  • Simpson, G. G. (1975). Recent advances in methods of phylogenetic inference. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 3–19, Plenum Press, New York.

    Google Scholar 

  • Simpson, G. G. (1978). Early mammals in South America: Fact, controversy, and mystery.Proc. Am. Phil. Soc. 122 318–328.

    Google Scholar 

  • Sues, H.-D. (1985). The relationships of the Tritylodontidae (Synapsida).Zool. J. Linn. Soc. 85 205–217.

    Google Scholar 

  • Swofford, D. L. (1990).PAUP. Phylogenetic Analysis Using Parsimony, User Manual, Version 3.0, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D. L. (1991). When are phylogeny estimates from molecular and morphological data incongruent? InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 295–333, Oxford University Press, New York.

    Google Scholar 

  • Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. InMajor Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.

    Google Scholar 

  • Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and a classification. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 621–640, Roy. Zool. Soc. NSW, Sydney.

    Google Scholar 

  • Szalay, F. S., and Bock, W. J. (1991). Evolutionary theory and systematics: Relationships between process and patterns.Zeitschr. Zool. Syst. Evolforsch. 29 1–39.

    Google Scholar 

  • Szalay, F. S., Novacek, M. J., and McKenna, M. C., eds. (1993).Mammal Phylogeny, Vol. 1. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials; Vol. 2. Placentals, Springer Verlag, New York (in press).

    Google Scholar 

  • Tandler, J. (1902). Zur Entwicklungsgeschichte der Kopfarterien by den Mammalia.Gegenbaurs Morph. Jahrb. 30 275–373.

    Google Scholar 

  • Thewissen, J. G., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly.Science 251 934–936.

    Google Scholar 

  • Thiele, A., Vogelsang, M., and Hoffmann, K.-P. (1991). Patterns of retinotectal projection in the megachiropteran batRousettus aegyptiacus.J. Comp. Neurol. 314 671–683.

    Google Scholar 

  • Thomas, R. H., Schaffner, W., Wilson, A. C., and Pääbo, S. (1989). DNA phylogeny of the extinct marsupial wolf.Nature 340 465–467.

    Google Scholar 

  • Turnbull, W. D. (1970). Mammalian masticatory apparatus.Fieldiana Geol. 18 149–356.

    Google Scholar 

  • Vaughn, P. P. (1978).Mammalogy, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Westerman, M., and Edwards, D. (1991). The relationship ofDromiciops australis to other marsupials: Data from DNA-DNA hybridisation studies.Aust. J. Zool. 39 123–130.

    Google Scholar 

  • Waterman, M. S., Joyce, J., and Eggert, M. (1991). Computer alignment of sequences. InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 59–72.

  • Wheeler, Q. D. (1990). Ontogeny and character phylogeny.Cladistics 6 225–268.

    Google Scholar 

  • Wheeler, W. C. (1992). Extinction, sampling, and molecular phylogenetics. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 205–215, Columbia University Press, New York.

    Google Scholar 

  • Wheeler, W. C., and Honeycutt, R. L. (1988). Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications.Mol. Biol. Evol. 5 90–96.

    Google Scholar 

  • Wible, J. R. (1986). Transformation in the extracranial course of the internal carotid artery in mammalian phylogeny.J. Vert. Paleo. 6 313–325.

    Google Scholar 

  • Wible, J. R. (1987). The eutherian stapedial artery: Character analysis and implications for superordinal relationships.Zool. J. Linn. Soc. 91 107–135.

    Google Scholar 

  • Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats.Am. Mus. Novitates 2911 1–19.

    Google Scholar 

  • Wyss, A. R., Novacek, M. J., and McKenna, M. C. (1987). Amino acid sequence versus morphological data and the interordinal relationship of mammals.Mol. Biol. Evol. 4 99–116.

    Google Scholar 

  • Zeller, U. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. InMorphogenesis of the Mammalian Skull, H.-J. Kuhn and U. Zeller, eds., pp. 17–50, Mammalia Depicta, Heft 13.

  • Zuckerkandl, E., and Pauling, L. (1962). Molecular disease, evolution and genic heterogeneity. InHorizons in Biochemistry, M. Kash and B. Bullman, eds., pp. 189–225, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novacek, M.J. Reflections on higher mammalian phylogenetics. J Mammal Evol 1, 3–30 (1993). https://doi.org/10.1007/BF01027597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027597

Key words

Navigation