Skip to main content
Log in

Transfer of F in the reaction of SF 6 with SOF4: Implications for SOF4 production in corona discharges

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF 6 +SOF4→SOF 5 +SF5 have been measured. ForT<270 K,k approaches a constant of 2.1×10−9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [−3.3 lnT(K)]. ForE/P<V/cm·torr,k has a constant value of about 2.5×10−10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)∼7.0×10−10 exp (−0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF 6 +SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF 6 is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF 6 is efficiently deactivated by other reactions, and the influence of SF 6 +SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gutbier. Phys. Verh.17, 163 (1966).

    Google Scholar 

  2. R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).

    Google Scholar 

  3. H. J. Emeleus and B. Tittle,J. Chem. Soc., 1644 (1963).

  4. G. Bruno, P. Capezzuto, and F. Cramarossa,J. Flour. Chem. 14, 115 (1979).

    Google Scholar 

  5. R. J. Van Brunt,J. Res. Natl. Bur. Stand. 90, 229 (1985).

    Google Scholar 

  6. W. Becher and J. Massonne,Elektrotech. Z. Ausg. A 91, 605 (1970).

    Google Scholar 

  7. C. Boudene, J. Cluet, G. Keib, and G. Wind,Rev. Gen. Electr. No. Special, 45 (1974).

  8. I. Sauers, H. W. Ellis, and L. G. Christophorou,IEEE Trans. Electr. Insul. EI-21, 111 (1986).

    Google Scholar 

  9. I. Sauers,Plasma Chem. Plasma Process. 8, 247 (1988).

    Google Scholar 

  10. M. C. Siddagangappa and R. J. Van Brunt,Proc. 8th Int. Conf. on Gas Discharges and Their Applications, Leeds University Press, London (1985), pp. 247–250.

    Google Scholar 

  11. M. C. Siddagangappa, R. J. Van Brunt, and A. V. Phelps,Proc. 1986 IEEE Int. Symp. on Electr. Insul., IEEE, New York (1986), pp. 225–229.

  12. I. Sauers,IEEE Trans. Electr. Insul. EI-21, 105 (1986).

    Google Scholar 

  13. R. J. Van Brunt and I. Sauers,J. Chem. Phys. 85, 4377 (1986).

    Google Scholar 

  14. R. J. Van Brunt and M. C. Siddagangappa,Plasma Chem. Plasma Process. 8, 207 (1988).

    Google Scholar 

  15. I. Sauers, L. W. Sieck, R. J. Van Brunt, and M. C. Siddagangappa, Proc. 1986 Gaseous Electronics Conf.,Bull. Am. Phys. Soc. 32, 1169 (1987).

    Google Scholar 

  16. L. W. Sieck and M. Meot-Ner,J. Phys. Chem. 88, 5324 (1984).

    Google Scholar 

  17. L. W. Sieck,J. Phys. Chem. 89, 5552 (1985).

    Google Scholar 

  18. L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry,J. Appl. Phys. 50, 6789 (1979); R. K. Asundi and J. D. Craggs,Proc. Phys. Soc. 83, 611 (1964); A. Chutjian,J. Phys. Chem. 86, 3518 (1982);Phys. Rev. Lett. 46, 1511 (1981).

    Google Scholar 

  19. L. W. Sieck and R. J. Van BruntJ. Phys. Chem. 92, 708 (1988).

    Google Scholar 

  20. R. Morrow,IEEE Trans. Plasma Sci. PS-14, 234 (1986); K. P. Brand and H. Jungblut,J. Chem. Phys. 78, 1999 (1983); P. L. Patterson,J. Chem. Phys. 56, 3943 (1972).

    Google Scholar 

  21. H. E. Revercomb and E. A. Mason,Anal. Chem. 47, 970 (1975).

    Google Scholar 

  22. M. P. Langevin,Ann. Chim. Phys. 5, 245 (1905).

    Google Scholar 

  23. I. C. Plumb and K. R. Ryan,Plasma Chem. Plasma Process. 6, 247 (1986).

    Google Scholar 

  24. J. T. Herron,IEEE Trans. Electr. Insul. EI-22, 523 (1987).

    Google Scholar 

  25. R. J. Van Brunt, J. T. Herron, and C. Fenimore, inGaseous Dielectrics V, Proc. 5th Int. Symp. on Gaseous Dielectrics, L. G. Christophorou, ed., Pergamon Press, New York (1987), pp. 163–173.

    Google Scholar 

  26. T. F. Magnera and P. Kebarle inIonic Processes in the Gas Phase, M. A. Almoster Ferreira, ed., D. Reidel, Boston (1984), pp. 135–157.

    Google Scholar 

  27. M. Meot-Ner and F. H. Field,J. Chem. Phys. 64, 277 (1976).

    Google Scholar 

  28. D. K. Sen Sharma and P. Kebarle,J. Am. Chem. Soc. 104, 19 (1982).

    Google Scholar 

  29. T. Su and M. T. Bowers inGas-Phase Ion Chemistry, M. T. Bowers, ed., Academic Press, New York (1979), pp. 1–44.

    Google Scholar 

  30. W. Lindinger, D. L. Albritton, and F. C. Fehsenfeld, cited in E. E. Ferguson,Int. J. Mass-Spectrom. Ion Phys. 19, 53 (1976).

    Google Scholar 

  31. L. W. Sieck, J. Phys. Chem.90, 6684 (1986).

    Google Scholar 

  32. L. M. Babcock and G. E. Streit,J. Chem. Phys. 75, 3864 (1981).

    Google Scholar 

  33. M. K. Murphy and J. L. Beauchamp,J. Am. Chem. Soc. 99, 4992 (1977).

    Google Scholar 

  34. I. Sauers, J. L. Adock, L. G. Christophorou, and H. W. Ellis,J. Chem. Phys. 83, 2618 (1985).

    Google Scholar 

  35. J. W. Larson and T. B. McMahon,J. Am. Chem. Soc. 107, 766 (1985).

    Google Scholar 

  36. I. Sauers, Proc. 1987 Gaseous Electronics Conf.,Bull. Am. Phys. Soc. 33, 135 (1988).

    Google Scholar 

  37. M. J. Frisch, J. E. Del Bene, J. S. Binkley, and H. F. Schaefer,J. Chem. Phys. 84, 2279 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Brunt, R.J., Sieck, L.W., Sauers, I. et al. Transfer of F in the reaction of SF 6 with SOF4: Implications for SOF4 production in corona discharges. Plasma Chem Plasma Process 8, 225–246 (1988). https://doi.org/10.1007/BF01016159

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016159

Key Words

Navigation