Skip to main content
Log in

Isolation and identification of allelochemicals that attract the larval parasitoid,Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Volatiles released from corn seedlings on which beet armyworm larvae were feeding were attractive to females of the parasitoid,Cotesia marginiventris (Cresson), in flight tunnel bioassays. Analyses of the collected volatiles revealed the consistent presence of 11 compounds in significant amounts. They were: (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)- 3-hexen-1-yl acetate, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, indole, α-trans-bergamotene, (E)-β-farnesene, (E)-nerolidol, and (3E,7E)-4,8,12-trimethyl-1, 3,7,ll-tridecatetraene. A synthetic blend of all 11 compounds was slightly less attractive to parasitoid females than an equivalent natural blend. However, preflight experience with the synthetic blend instead of experience with a regular plant-host complex significantly improved the response to the synthetic blend. Our results suggest thatC. marginiventris females, in their search for hosts, use a blend of airborne semiochemicals emitted by plants on which their hosts feed. The response to a particular odor blend dramatically increases after a parasitoid experiences it in association with contacting host by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alphen, J.J.M. Van, andVet, L.E.M. 1986. An evolutionary approach to host finding and selection, pp. 23–61,in J.K. Waage, and D.J. Greathead (eds.). Insect Parasitoids. Academic Press, London.

    Google Scholar 

  • Bestmann, H.-J., Classen, B., Kobold, U., Vostrowsky, O., Klingauf, F., andStein, U. 1988. Steam volatile constituents from leaves ofRhus typhina.Phytochemistry 27:85–90.

    Google Scholar 

  • Bowers, W.S., Nault, L.R., Webb, R.E., andDutky, S.R. 1972. Aphid alarm pheromone: Isolation, identification, synthesis.Science 177:1121–1122.

    Google Scholar 

  • Brownlee, R.G., andSilverstein, R.M. 1968. A micro-preparative gas Chromatograph and a modified carbon skeleton determinator.Anal. Chem. 40:2077–2079.

    Google Scholar 

  • Buttery, R.G., andLing, L.C. 1984. Corn leaf volatiles: Identification using tenax trapping for possible insect attractants.J. Agric. Food Chem. 32:1104–1106.

    Google Scholar 

  • Buttery, R.G., Teranishi, R., andLing, L.C. 1987. Fresh tomato aroma volatiles: A quantitative study.J. Agric. Food Chem. 35:540–544.

    Google Scholar 

  • Corey, E.J., Cane, D.E., andLibit, L. 1971. The synthesis of racemicα-trans- andβ-transbergamotene.J. Am. Chem. Soc. 93:7016–7021.

    Google Scholar 

  • Dicke, M., andSabelis, M.W. 1988. How plants obtain predatory mites as bodyguards.Neth. J. Zool. 38:148–165.

    Google Scholar 

  • Dicke, M., Van Beek, T.A., Posthumus, M.A., Ben Dom, N., Van Bokhoven, H., andDe Groot, E. 1990a. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production.J. Chem. Ecol. 16:381–396.

    Google Scholar 

  • Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J., andPosthumus, M.A. 1990b. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control.J. Chem. Ecol. 16:3091–3118.

    Google Scholar 

  • Dmoch, J., Lewis, W.J., Martin, P.B., andNordlund, D.A. 1985. Role of the host-produced stimuli and learning in host selection behavior ofCotesia (Apanteles) marginiventris (Cresson).J. Chem. Ecol. 11:453–463.

    Google Scholar 

  • Doskotch, R.W., Chenc, H.-Y., Odell, T.M., andGirard, L. 1980. Nerolidol: An antifeeding sesquiterpene alcohol for gypsy moth larvae fromMelaleuca leucadendron.J. Chem. Ecol. 6:845–851.

    Google Scholar 

  • Edwards, L.J., Siddail, J.B., Dunham, L.L., Uden, P., andKislow, C.J. 1973.trans-β-Far- nesene alarm pheromone of the green peach aphid,Myzus persicae Sulzer.Nature 241:126–127.

    PubMed  Google Scholar 

  • Eller, F.J. 1990. Foraging behavior ofMicroplitis croceipes, a parasitoid ofHeliothis species. PhD dissertation. University of Florida, Gainesville. 221 pp.

    Google Scholar 

  • Grob, K., Jr. 1982. Partial solvent trapping in capillary gas chromatography. Description of a solvent effect.J. Chromatogr. 251:235–248.

    Google Scholar 

  • Gunasena, G.H., Vinson, S.B., Williams, H.J., andStipanovic, R.D. 1988. Effects of caryophyllene, caryophyllene oxide, and their interaction with gossypol on the growth and developmentof Heliothis virescens (F.) (Lepidoptera: Noctuidae).J. Econ. Entomol. 81:93–97.

    Google Scholar 

  • Jones, T.G.H., andHarvey, J.M. 1936. Essential oils from the Queensland flora. Part VIII. The identity of melaleucol with nerolidol.Proc. R. Soc. Queensl. 47:92–93.

    Google Scholar 

  • Kaiser, R. 1987. Night-scented flowers, not only attractive to moths. Abstracts EUCHEM conference: Semiochemicals in the Plant and Animal Kingdoms. October 12–16, 1987, Angers, France.

    Google Scholar 

  • Kamm, J.A., andButtery, R.G. 1983. Response of the alfalfa seed chalcid,Bmchophagus roddi, to alfalfa volatiles.Entomol. Exp. Appl. 23:129–134.

    Google Scholar 

  • King, E.G., andLeppla, N.C. 1984. Advances and Challenges in Insect Rearing. Agricultural Research Service, USDA, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Kovats, E. 1965. Retention index system.Adv. Chromatogr. 1:229–234.

    Google Scholar 

  • Lewis, W.J., andNordlund, D.A. 1985. Behavior-modifying chemicals to enhance natural enemy effectiveness, pp. 89–101,in M.A. Hoy, and D.C. Herzog (eds.). Biological Control in Agricultural IPM Systems. Academic Press, New York.

    Google Scholar 

  • Lewis, W.J., andTumlinson, J.H. 1988. Host detection by chemically mediated associative learning in a parasitic wasp.Nature 331:257–259.

    Google Scholar 

  • Loke, W.H., andAshley, T.R. 1984a. Behavioral and biological responses ofCotesia marginiventris to kairomones of the fall armyworm,Spodoptera frugiperda.J. Chem. Ecol. 10:521–529.

    Google Scholar 

  • Loke, W.H., andAshley, T.R. 1984b. Sources of fall armyworm,Spodoptera frugiperda (Lepidoptera: Noctuidae), kairomones eliciting host-finding behavior inCotesia (Apanteles) Marginiventris (Hymenoptera: Braconidae).J. Chem. Ecol. 10:1019–1027.

    Google Scholar 

  • Loke, W.H., andAshley, T.R. 1984c. Potential uses of kairomones for behavioral manipulationof Cotesia marginiventris (Cresson).J. Chem. Ecol. 10:1377–1384.

    Google Scholar 

  • Loke, W.H., Ashley, T.R., andSailer, R.I. 1983. Influence of fall armyworm.Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and corn plant damage on host finding inApanteles marginiventris (Hymenoptera: Braconidae).Environ. Entomol. 12:911–915.

    Google Scholar 

  • Maurer, B., Hauser, A., andFroidevaux, J.C. 1986. (E)-4,8-Dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, two unusual hydrocarbons from cardamom, oil.Tetrahedron Lett. 27:2111–2112.

    Google Scholar 

  • McCutcheon, O.S., andTurnipseed, S.G. 1981. Parasites of Lepidopterous larvae in insect resistant and susceptible soybeans in South Carolina.Environ. Entomol. 10:69–74.

    Google Scholar 

  • Mihaliar, C.A., Couvet, D., andLincoln, D.E. 1987. Inhibition of feeding by a generalist insect due to increased volatile leaf terpenes under nitrate-limiting conditions.J. Chem. Ecol. 13:2059–2067.

    Google Scholar 

  • Minyard, J.P., Tumlinson, J.H., Thompson, A.C., andHedin, P.A. 1966. Constituents of the cotton bud. Sesquiterpene hydrocarbons.J. Agr. Food Chem. 14:332–336.

    Google Scholar 

  • Naves, Y.R. 1960. On the presence of geraniol, nerol, linalool, farnesols, and nerolidols in essential oils.C.R. Acad. Sci. Ser. C 251:900–902.

    Google Scholar 

  • Pair, S.D., Laster, M.L., andMartin, D.F. 1982. Parasitoids ofHeliothis spp. (Lepidoptera: Noctuidae) larvae in Mississippi associated with sesame interplantings in cotton, 1971–1974: Implications of host-habitat interaction.Environ. Entomol. 11:509–512.

    Google Scholar 

  • Picker, K., Ritchie, E., andTaylor, W.C. 1976. The chemical constituents of AustralianFlindersia species. XXI. An examination of the bark and the leaves ofF. laevicarpa.Aust. J. Chem. 29: 2023–2026.

    Google Scholar 

  • Stenhagen, E., Abrahamsson, S., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data. Wiley, New York. 1257 pp.

    Google Scholar 

  • Thompson, A.C., Hedin, P.A., andGueldner, R.C. 1974. Corn bud essential oil.Phytochemistry 13:2029–2032.

    Google Scholar 

  • Tingle, F.C., Ashley, T.R., andMitchell, E.R. 1978. Parasites ofSpodoptera exigua, S. eridania (Lep.: Noctuidae) andHerpetogramma bipunctalis (Lep.: Pyralidae) collected fromAmaranthus hybridus in field corn.Entomophaga 23:343–347.

    Google Scholar 

  • Tollsten, L., andBergström, G. 1988. Headspace volatiles of whole plants and macerated plant parts ofBrassica andSinapis.Phytochemistry 27:4013–4018.

    Google Scholar 

  • Turlings, T.C.J., andTumlinson, J.H. 1991. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts?Fla. Entomol. 74:42–50.

    Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., Lewis, W.J., andVet, L.E.M. 1989. Beneficial arthropod behavior mediated by airborne semiochemicals. VII. Learning of host-related odors induced by a brief contact experience with host by-products inCotesia marginiventris (Cresson), a generalist larval parasitoid.J. Insect Behav. 2:217–225.

    Google Scholar 

  • Turlings, T.C.J., Scheepmaker, J.W.A., Vet, L.E.M., Tumlinson, J.H., andSclewis, Wj. 1990a. How contact foraging experiences affect the preferences for host-related odors in the larval parasitoidCotesia marginiventris (Cresson) (Hymenoptera: Braconidae).J. Chem. Ecol. 16:1577–1589.

    Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., andLewis, W.J. 1990b. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps.Science 250: 1251–1253.

    Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., Eller, F.J., andLewis, W.J. 1991. Larval-damaged plants: Source of volatile synomones that guide the parasitoidCotesia marginiventris to the microhabitat of its hosts.Entomol. Exp. Appl. 58:75–82.

    Google Scholar 

  • Vet, L.E.M., andGroenewold, A.W. 1990. Semiochemicals and learning in parasitoids.J. Chem. Ecol. 16:3119–3135.

    Google Scholar 

  • Vinson, S.B. 1981. Habitat location, pp. 51–77,in D.A. Nordlund, R.L. Jones, andW.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley & Sons, New York.

    Google Scholar 

  • Visser, J.H., Van Straten, S., andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:13–25.

    Google Scholar 

  • Weseloh, R.M. 1981. Host location by parasitoids, pp. 79–95,in D.A. Nordlund, R.L. Jones, and W.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley & Sons, New York.

    Google Scholar 

  • Wohlers, P. 1981. Effects of the alarm pheromone (E)-β-farnesene on dispersal behavior of the pea aphidAcyrthosiphon pisum.Entomol. Exp. Appl. 9:117–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turlings, T.C.J., Tumlinson, J.H., Heath, R.R. et al. Isolation and identification of allelochemicals that attract the larval parasitoid,Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17, 2235–2251 (1991). https://doi.org/10.1007/BF00988004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988004

Key Words

Navigation