Skip to main content
Log in

Ion transport in liver mitochondria from normal and thyroxine-treated rats

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Liver mitochondria isolated from rats 24 h after a single subcutaneous injection of 8 mg thyroxine per kilogram body weight were compared with those isolated from control rats that received injections of isotonic saline at the same time. The mitochondria isolated from the thyroxine-treated rats show higher rates of energy-dependent K+ and phosphate accumulation than those from control animals. It was also found that mitochondria from the hormone-treated animals required a larger addition of Ca2+/mg mitochondrial protein in order to uncouple oxidative phosphorylation, and showed smaller tendency to swellin vitro under energizing conditions. The data obtained on ion movements support previous observations that the stimulation of the basal rate of mitochondrial respiration by thyroxine is associated with an increase in the transmembrane protonic electrochemical potential difference, and indicate thatin vivo the hormone raises the intramitochondrial concentration of K+ and phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Shears and J. R. Bronk,Biochem. J. 178 (1979) 505–507.

    Google Scholar 

  2. J. R. Bronk,Science 141 (1963) 816–818.

    Google Scholar 

  3. F. L. Hoch,Arch. Biochem. Biophys. 124 (1968) 238–247.

    Google Scholar 

  4. B. Chance and G. R. Williams,J. Biol. Chem. 217 (1955) 409–427.

    Google Scholar 

  5. F. L. Hoch and F. Lipmann,Proc. Natl. Acad. Sci. 40 (1954) 909–921.

    Google Scholar 

  6. P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation (Bodmin), Glynn, Res. Ltd. (1966).

  7. J. E. Rall, J. Roche, R. Michel, O. Michel, and S. Varrone,Biochem. Biophys. Res. Commun. 7 (1962) 111–115.

    Google Scholar 

  8. A. L. Lehninger,Ann. N. Y. Acad. Sci. 86 (1960) 484–493.

    Google Scholar 

  9. K. A. Webster and J. R. Bronk,J. Bioenerg. Biomembr. 10 (1978) 23–44.

    Google Scholar 

  10. R. D. A. Lang and J. R. Bronk,J. Cell. Biol. 77 (1978) 134–147.

    Google Scholar 

  11. H. Tedeschi,Biochim, Biophys. Acta. 46 (1961) 159–169.

    Google Scholar 

  12. A. Azzi and G. F. Azzone,Biochim. Biophys. Acta. 131 (1967) 468–478.

    Google Scholar 

  13. K. van Dam and C. S. Tsou,Biochim. Biophys. Acta. 162 (1968) 301–309.

    Google Scholar 

  14. W. W. Kielley and R. K. Kielley,J. Biol. Chem. 191 (1951) 485–500.

    Google Scholar 

  15. E. Layne,Methods Enzymol. 3 (1957) 447–454.

    Google Scholar 

  16. G. M. Heaton and D. G. Nicholls,Biochem. J. 156 (1976) 635–646.

    Google Scholar 

  17. J. G. Amoore, D. S. Parsons, and W. Werkheiser,Biochem. J. 69 (1958) 236–238.

    Google Scholar 

  18. J. Murphy and J. P. Riley,Anal. Chim. Acta. 27 (1962) 31–36.

    Google Scholar 

  19. M. S. Patterson and R. Greene,Anal. Chem. 37 (1965) 854–857.

    Google Scholar 

  20. A. L. Koch,Anal. Biochem. 23 (1968) 352–254.

    Google Scholar 

  21. J. R. Bronk and D. S. Parsons,Biochim. Biophys. Acta 107 (1965) 397–404.

    Google Scholar 

  22. M. Höfer and B. C. Pressman,Biochemistry 5 (1966) 3919–3925.

    Google Scholar 

  23. H. Tedeschi and D. L. Harris,Biochim. Biophys. Acta. 28 (1958) 392–402.

    Google Scholar 

  24. A. R. L. Gear and A. L. Lehninger,J. Biol. Chem. 243 (1968) 3953–3962.

    Google Scholar 

  25. A. L. Lehinger, E. Carafoli, and C. S. Rossi,Adv. Enzymol. 29 (1967) 259–320.

    Google Scholar 

  26. G. P. Brierley,Mol. Cell. Biochem. 10 (1976) 41–62.

    Google Scholar 

  27. D. G. Nicholls,Eur. J. Biochem. 50 (1974) 305–315.

    Google Scholar 

  28. J. H. Johnson and B. C. Pressman,Arch. Biochem. Biophys. 132 (1969) 139–145.

    Google Scholar 

  29. V. Prpic, T. L. Spencer, and F. L. Bygrave,Biochem. J. 176 (1978) 705–714.

    Google Scholar 

  30. G. P. Brierley, E. Murer, and D. E. Green,Science 140 (1963) 60–63.

    Google Scholar 

  31. J. E. Amoore and W. Bartley,Biochem. J. 69 (1958) 223–236.

    Google Scholar 

  32. P. Mitchell and J. Moyle,Biochem. J. 104 (1967) 588–600.

    Google Scholar 

  33. A. Marzoev and Y. U. A. Vladimirov,Bull. Exp. Biol. Med. 84 (1977) 1422–1424.

    Google Scholar 

  34. C. R. Hackenbrock and A. I. Caplan,J. Cell. Biol. 42 (1969) 221–234.

    Google Scholar 

  35. A. L. Lehninger,Biochem. J. 119 (1970) 129–138.

    Google Scholar 

  36. S. McLaughlin,Curr. Top. Membr. Transp. 9 (1977) 71–144.

    Google Scholar 

  37. H. Baltscheffsky,Biochim. Biophys. Acta. 20 (1956) 434–435.

    Google Scholar 

  38. K. Jacobson and D. Papahadjopoulos,Biochemistry 14 (1975) 152–161.

    Google Scholar 

  39. E. Ligeti and A. Fonyo,FEBS Lett. 79 (1977) 33–36.

    Google Scholar 

  40. J. Duszynski and L. Wojcozak,Biochem. Biophys. Res. Commun. 74 (1977) 417–424.

    Google Scholar 

  41. M. C. D. Magalhaes,Life Sci. 16 (1975) 1089–1094.

    Google Scholar 

  42. G. Van Rossum, K. P. Smith, and P. Beeton,Nature 260 (1976) 335–337.

    Google Scholar 

  43. J. S. Puskin, T. E. Gunter, K. K. Gunter, and P. R. Russell,Biochemistry 15 (1976) 3834–3842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shears, S.B., Bronk, J.R. Ion transport in liver mitochondria from normal and thyroxine-treated rats. J Bioenerg Biomembr 12, 379–393 (1980). https://doi.org/10.1007/BF00748766

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00748766

Keywords

Navigation