Skip to main content
Log in

Is histamine a neurotransmitter in insect photoreceptors?

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Intracellular recordings were made from the large monopolar cells (LMC's) in the first visual neuropil (lamina) of the flyMusca, whilst applying pharmacological agents from a three-barrelled ionophoretic pipette (Fig. 1). Most of the known neurotransmitter candidates (except the neuropeptides) were tested. The LMC's were most sensitive to histamine, saturating with ionophoretic pulses of less than 2 nC. The responses to histamine were fast hyperpolarizations with maximum amplitudes similar to that of the light-induced response (Fig. 3). Like the light response, the histamine response was associated with a conductance increase (Fig. 5). The histamine responses were not blocked by a synaptic blockade induced by ionophoretic application of cobalt ions (Fig. 6). Several histamine antagonists, and also atropine, were effective at blocking or reducing both the response to histamine and the response to light (Fig. 7). Other transmitter candidates having marked effects on the LMC's were: a) the acidic amino-acids, L-aspartate and L-glutamate, which evoked slower hyperpolarizations that could be blocked by cobalt (Fig. 11); b) GABA, which induced a depolarization associated with an inhibition of the light response (Fig. 9); and c) acetylcholine which also caused a depolarization (Fig. 10). Substances with no obvious effect on the LMC's included serotonin (5-HT),β-alanine, dopamine, octopamine, glycine, taurine and noradrenalin. Together with the evidence of Elias and Evans (1983), which shows the presence, synthesis and inactivation of histamine in the retina and optic lobes of the locust, the data suggest that histamine is a neurotransmitter in insect photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HA :

histamine

GABA :

γ-amino butyric acid

ACh :

acetylcholine

5-HT :

5-hydroxy-tryptamine (or serotonin)

R1-6 :

class of fly photoreceptors

LMC :

large monopolar cell

L1, L2 andL3 :

classes thereof

References

  • Autrum H, Hoffmann E (1957) Die Wirkung von Pikrotoxin und Nikotin auf das Retinogramm von Insekten. Z Naturforsch 12b:752–757

    Google Scholar 

  • Buchner E, Buchner S, Crawford O, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain ofDrosophila melanogaster. Cell Tissue Res 246:57–62

    Google Scholar 

  • Campos-Ortega JA (1974) Autoradiographic localization of3H-γ-aminobutyric acid uptake in the lamina ganglionaris ofMusca andDrosophila. Z Zellforsch 147:415–431

    Google Scholar 

  • Clairborne BJ, Selverston AI (1984) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4:708–721

    Google Scholar 

  • Datum K-H, Weiler R, Zettler F (1986) Immunocytochemical demonstration ofγ-amino butyric acid and ‘glutamic acid’ decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J Comp Physiol A 159:241–249

    Google Scholar 

  • Dudai Y (1980) Cholinergic receptors ofDrosophila. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier North Holland, New York, pp 93–110

    Google Scholar 

  • Elias MS, Evans PD (1983) Histamine in the insect nervous system: distribution, synthesis and metabolism. J Neurochem 41:562–568

    Google Scholar 

  • Elias MS, Evans PD (1984) Autoradiographic localization of3H-histamine accumulation by the visual system of the locust. Cell Tissue Res 238:105–112

    Google Scholar 

  • Elias MS, Lummis SCR, Evans PD (1984) [3H] mepyramine binding sites in the optic lobes of the locust: autoradiographic and pharmacological studies. Brain Res 294:359–362

    Google Scholar 

  • Greenspan RJ (1980) Mutations of choline acetyltransferase and associated neural defects inDrosophila melanogaster. J Comp Physiol 137:83–92

    Google Scholar 

  • Hall JC (1982) Genetics of the nervous system inDrosophila. Q Rev Biophys 15:223–479

    Google Scholar 

  • Hall JG, Hicks TP, McLennan H, Richardson TL, Wheal HV (1979) The excitation of mammalian central neurones by amino acids. J Physiol 286:29–39

    Google Scholar 

  • Heisenberg M (1971) Separation of receptor and lamina potentials in the electroretinogram of normal and mutantDrosophila. J Exp Biol 55:85–100

    Google Scholar 

  • Hotta Y, Benzer S (1970) Genetic dissection of theDrosophila nervous sysem by means of mosaics. Proc Natl Acad Sci USA 73:4154–4158

    Google Scholar 

  • Järvilehto M, Zettler F (1973) Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z Zellforsch 136:291–306

    Google Scholar 

  • Klingman A, Chappell RL (1978) Feedback synaptic interaction in the dragonfly ocellar retina. J Gen Physiol 71:157–175

    Google Scholar 

  • Konopka RJ (1972) Abnormal concentrations of dopamine in aDrosophila mutant. Nature (Lond) 239:281–282

    Google Scholar 

  • Laughlin SB (1974a) Resistance changes associated with the response of insect monopolar neurons. Z Naturforsch 29c:449–450

    Google Scholar 

  • Laughlin SB (1974b) Neural integration in the first optic neuropile of dragonflies II. Receptor signal interactions in the lamina. J Comp Physiol 92:357–375

    Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual system of invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 128:319–340

    Google Scholar 

  • Laughlin SB, Howard J, Blakeslee B (1987) Synaptic limitations to contrast coding in the retina of the blowflyCalliphora. Proc R Soc Lond B (in press)

  • McCaman RE, Weinreich D (1985) Histaminergic synaptic transmission in the cerebral ganglion ofAplysia. J Neurophysiol 53:1016–1037

    Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    Google Scholar 

  • Misgeld U, Deisz RA, Dodt HU, Lux HD (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232:1413–1415

    Google Scholar 

  • Muijser H (1979) The receptor potential of retinular cells of the blowflyCalliphora: the role of sodium, potassium and calcium ions. J Comp Physiol 132:87–95

    Google Scholar 

  • Nicol D, Meinertzhagen IA (1982) An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. J Comp Neurol 207:29–44

    Google Scholar 

  • Pelhate M, Sattelle DB (1982) Pharmacological properties of insect axons: a review. J Insect Physiol 28:889–893

    Google Scholar 

  • Prell GD, Green JP (1986) Histamine as a neuroregulator. Annu Rev Neurosci 9:209–254

    Google Scholar 

  • Purves RD (1979) The physics of iontophoretic pipettes. J Neurosci Methods 1:165–178

    Google Scholar 

  • Roberts F (1981) The in vitro iontophoretic release of radiolabelled histamine, N2-methyl-histamine and GABA from 7-barrelled glass micropipettes. Neuropharmacol 20:711–714

    Google Scholar 

  • Saint Marie RL, Carlson SD (1983) Glial membrane specializations and the compartmentalization of the lamina ganglionaris of the housefly compound eye. J Neurocytol 12:234–275

    Google Scholar 

  • Sattelle D, Pinnock RD, Wafford KA, David JA (in press) GABA receptors on the cell body membrane of an identified insect motorneuron. Proc R Soc Lond B

  • Schwartz J-C, Arrang J-M, Garbarg M, Korner M (1986) Properties and roles of the three subclasses of histamine receptors in brain. J Exp Biol 124:203–224

    Google Scholar 

  • Shaw SR (1984) Early visual processing in insects. J Exp Biol 112:225–251

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Vision in invertebrates. (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 1–134

    Google Scholar 

  • Weinreich D, Weiner C, McCaman R (1975) Endogenous levels of histamine in single neurons isolated from CNS ofAplysia californica. Brain Res 84:341–345

    Google Scholar 

  • Wilson M, Garrard P, McGiness S (1978) The unit structure of the locust compound eye. Cell Tissue Res 195:205–226

    Google Scholar 

  • Zimmerman RP (1978) Field potential analysis and the physiology of second-order neurons in the visual system.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, R.C. Is histamine a neurotransmitter in insect photoreceptors?. J. Comp. Physiol. 161, 201–213 (1987). https://doi.org/10.1007/BF00615241

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615241

Keywords

Navigation