Skip to main content
Log in

Large and small conductance calcium-activated potassium channels in the GH3 anterior pituitary cell line

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Single Ca2+-activated K+ channels were studied in membrane patches from the GH3 anterior pituitary cell line. In excised inside-out patches exposed to symmetrical 150 mM KCl, two channel types with conductances in the ranges of 250–300 pS and 9–14 pS were routinely observed. The activity of the large conductance channel is enhanced by internal Ca2+ and by depolarization of the patch membrane. This channel contributes to the repolarization of Ca2+ action potentials but has a Ca2+ sensitivity at −50 mV that is too low for it to contribute to the resting membrane conductance. The small conductance channel is activated by much lower concentrations of Ca2+ at −50 mV, ad its open probability is not strongly voltage sensitive. In cell-attached patches from voltage-clamped cells, the small conductance channels were found to be active during slowly decaying Ca2+-activated K+ tails currents and during Ca2+-activated K+ currents stimulated by thyrotropin-releasing hormone induced elevations of cytosolic calcium. In cell-attached patches on unclamped cells, the small conductance channels were also active at negative membrane potentials when the frequency of spontaneously firing action potentials was high or during the slow afterhyperpolarization following single spontaneous action potentials of slightly prolonged duration. The small conductance channel may thus contribute to the regulation of membrane excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert PR, Tashjian Jr AH (1984) Thyrotropin-releasing hormone-induced spike and plateau in cytosolic free Ca2+ concentrations in pituitary cells. J Biol Chem 259:5827–5832

    Google Scholar 

  • Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331:211–230

    Google Scholar 

  • Blatz AL, Magleby KL (1984) Ionic conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J Gen Physiol 84:1–23

    Google Scholar 

  • Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323:718–720

    Google Scholar 

  • Drummond AH (1986) Inositol lipid metabolism and signal transduction in clonal pituitary cells. J Exp Biol 124:337–358

    Google Scholar 

  • Dubinsky JM, Oxford GS (1985) Dual modulation of K channels by thyrotropin-releasing hormone in clonal pituitary cells. Proc Natl Acad Sci USA 82:4282–4286

    Google Scholar 

  • Dufy B, Vincent J-D, Fleury H, Du Pasquier P, Gourdji D, Tixier-Vidal A (1979) Membrane effects of thyrotropin-releasing hormone and estrogen shown by intracellular recording from pituitary cells. Science 204:509–511

    Google Scholar 

  • Fabiato, A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75:463–505

    Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetycholine. J Physiol 331:577–597

    Google Scholar 

  • Findlay I (1984) A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland. J Physiol 350:179–195

    Google Scholar 

  • Fischmeister R, Defelice LJ, Ayer RK Jr, Levi R, DeHaan RL (1984) Channel currents during spontaneous action potentials in embryonic chick heart cells. The action potential patch clamp. Biophys J 46:267–272

    Google Scholar 

  • Gershengorn MC (1986) Mechanism of thyrotropin-releasing hormone stimulation of pituitary hormone secretion. Annu Rev Physiol 48:515–526

    Google Scholar 

  • Gershengorn MC, Thaw C (1985) Thyrotropin-releasing hormone (TRH) stimulates biphasic elevation of cytoplasmic free calcium in GH3 cells. Further evidence that TRH mobilizes cellular and extracellular Ca2+. Endrocrinology 116:591–596

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Google Scholar 

  • Kawai T, Watanabe M (1986) Blockade of Ca-activated K conductance by apamin in rat sympathetic neurons. Br J Pharmacol 87:225–232

    Google Scholar 

  • Kidokoro Y (1975) Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion. Nature 258:741–742

    Google Scholar 

  • Lancaster B, Madison DV, Nicoll RA (1986) Charybdotoxin selectively blocks a fast Ca dependent afterhyperpolarization (AHP) in hippocampal pyramidal cells. Neurosci Abs 12:560

    Google Scholar 

  • Lang DG, Ritchie AK (1986) Two types of Ca2+-activated K+ channels in GH3 cells. Neurosci Abs 12:560

    Google Scholar 

  • Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141

    Google Scholar 

  • Maruyama Y, Petersen OH, Flanagan P, Pearson GT (1983) Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Nature 305:228–232

    Google Scholar 

  • Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys Struct Mech 9:35–60

    Google Scholar 

  • Ostberg BC, Sand O, Bjoro T, Haug E (1986) The phorbol ester TPA induces hormone release and electrical activity in clonal rat pituitary cells. Acta Physiol Scand 126:517–524

    Google Scholar 

  • Ozawa S (1985) TRH-induced membrane hyperpolarization in rat clonal anterior pituitary cells. Am J Physiol 248:E64–E69

    Google Scholar 

  • Ozawa S, Kimura N (1979) Membrane potential changes caused by thyrotropin-releasing hormone in the clonal GH3 cell and their relationship to secretion of pituitary hormone. Proc Natl Acad Sci USA 76:6017–6020

    Google Scholar 

  • Pennefather P, Lancaster B, Adams PR, Nicoll RA (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci USA 82:3040–3044

    Google Scholar 

  • Ritchie AK (1987a) Two distinct calcium-activated potassium currents in a rat anterior pituitary cell line. J Physiol 385:591–609

    Google Scholar 

  • Ritchie AK (1987b) Thyrotropin-releasing hormone stimulates a calcium-activated potassium current in a rat anterior pituitary cell line. J Physiol 385:611–625

    Google Scholar 

  • Rogawski MA, Dufy B, Barker JL (1985) The calcium- and voltage-dependent K+ channel of clonal anterior pituitary cells: pharmocological manipulation and role in action potential repolarization. Neurosci Abs 11:790

    Google Scholar 

  • Romey G, Lazdunski M (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Res Commun 118:669–674

    Google Scholar 

  • Sand O, Haug E, Gautvik KM (1980) Effects of thyroliberin and 4-aminopyridine on action potentials and prolactin release and synthesis in rat pituitary cells in culture. Acta Physiol Scand 108:247–252

    Google Scholar 

  • Tashjian AH, Yasumura Y, Levine L, Sato GH, Parker ML (1968) Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352

    Google Scholar 

  • Thomas MV (1982) Techniques in calcium research. Academic Press, San Diego, p 46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, D.G., Ritchie, A.K. Large and small conductance calcium-activated potassium channels in the GH3 anterior pituitary cell line. Pflugers Arch. 410, 614–622 (1987). https://doi.org/10.1007/BF00581321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581321

Key words

Navigation