Skip to main content
Log in

Genetics of subtilin and nisin biosyntheses

Biosynthesis of lantibiotics

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Several peptide antibiotics have been described as potent inhibitors of bacterial growth. With respect to their biosynthesis, they can be devided into two classes: (i) those that are synthesized by a non-ribosomal mechanism and (ii) those that are ribosomally synthesized. Subtilin and nisin belong to the ribosomally synthesized peptide antibiotics. They contain the rare amino acids dehydroalanine, dehydrobutyrine, meso-lanthionine, and 3-methyl-lanthionine. They are derived from prepeptides which are post-translationally modiffied and have been termed lantibiotics because of their characteristic lanthionine bridges (Schnell et al. 1988). Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain gram-positive bacteria (Mattick & Hirsch 1944, 1947; Rayman & Hurst 1984). It is produced by Lactococcus lactis strains belonging to serological group N. The potent bactericidal activities of nisin and other lantibiotics are based on depolarization of energized bacterial cytoplasmic membranes. Breakdown of the membrane potential is initiated by the formation of pores through which molecules of low molecular weight are released. A trans-negative membrane potential of 50 to 100 mV is necessary for pore formation by nisin (Ruhr & Sahl 1985; Sahl et al. 1987). Nisin occurs as a partially amphiphilic molecule (Van de Ven et al. 1991). Apart from the detergent-like effect of nisin on cytoplasmic membranes, an inhibition of murein synthesis has also been discussed as the primary effect (Reisinger et al. 1980). In several countries nisin is used to prevent the growth of clostridia in cheese and canned food. The nisin peptide structure was first described by Gross & Morall (1971), and its structural gene was isolated in 1988 (Buchman et al. 1988; Kaletta & Entian 1989). Nisin has two natural variants, nisin A and nisin Z, which differ in a single amino acid residue at position 27 (histidin in nisin A is replaced by asparagin in nisin Z (Mulders et al. 1991; De Vos et al. 1993). Subtilin is produced by Bacillus subtilis ATCC 6633. Its chemical structure was first unravelled by Gross & Kiltz (1973) and its structural gene was isolated in 1988 (Banerjee & Hansen 1988). Subtilin shares strong similarities to nisin with an identical organization of the lanthionine ring structures (Fig. 1), and both lantibiotics possess similar antibiotic activities. Due to its easy genetic analysis B. subtilis became a very suitable model organism for the identification and characterization of genes and proteins involved in lantibiotic biosynthesis. The pathway by which nisin is produced is very similar to that of subtilin, and the proteins involved share significant homologies over the entire proteins (for review see also De Vos et al. 1995b). The respective genes have been identified adjacent to the structural genes, and are organized in operon-like structures (Fig. 2). These genes are responsible for post-translational modification, transport of the modified prepeptide, proteolytic cleavage, and immunity which prevents toxic effects on the producing bacterium. In addition to this, biosynthesis of subtilin and nisin is strongly regulated by a two-component regulatory system which consists of a histidin kinase and a response regulator protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemura M, Makino K, Shinagawa A, Kobayashi A & Nakata A (1985) Nucleotide sequences of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J. Mol. Biol. 184: 241–250

    PubMed  Google Scholar 

  • Amemura M, Makino K, Shinagawa A & Nakata A (1986) Nucleotide sequence of the phoM region of Escherichia coli. J. Bacteriol. 168: 294–302

    PubMed  Google Scholar 

  • Banerjee S & Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508–9514

    Google Scholar 

  • Benz R. Jung G & Sahl HG (1991) Mechanism of channel-formation by lantibiotics in black lipid membranes. In: Jung G & Sahl HG (Eds) Nisin and Novel Lantibiotics (pp 359–372) ESCOM Science Publishers, Leiden, The Netherlands

    Google Scholar 

  • Blight MA & Holland IB (1990) Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4: 873–880

    PubMed  Google Scholar 

  • Cuchman GW, Banerjee S & Hansen JN (1988) Structure, expression and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263: 16260–16266

    PubMed  Google Scholar 

  • DeVos WM, Beerthuyzen MM, Luesink EJ & Kuipers OP (1995) Genetics of the nisin-sucrose conjugative transposon Tn5276. Dev. Biol. Stand. 85: 617–625

    PubMed  Google Scholar 

  • DeVos WM, Mulders JWM, Siezen RJ, Hugenholtz J & Kuipers O (1993) Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol. 59: 213–218

    PubMed  Google Scholar 

  • De Vos WM & Simons G (1994) Gene cloning and expression systems in Lactococci. In: Gasson MJ & De Vos WM (Eds) Genetics and Biotechnology of Lactic Acid Bacteria. (pp 52–105) Chapman & Hall

  • Dodd HM, Horn N & Gasson MJ (1990) Analysis of the genetic determinants for the production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555–566

    PubMed  Google Scholar 

  • DeVos WM, Kuipers OP, van deMeer RJ & Siezen RJ (1995b) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Mol. Microbiol. 17: 427–437

    PubMed  Google Scholar 

  • Eikmanns U, Kiesau P, Gutowski-Eckel Z, Hammelmann M & Entian KD (1995) A multimeric lantionine-synthetase complex is involved in posttranslational maturation of the lantibiotic subtilin. Submitted for publication.

  • Engelke G, Gutowski-Eckel Z, Hammelmann M & Entian KD (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58: 3730–3743

    PubMed  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Hammelmann M & Entian KD (1994) Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol. 60: 814–825

    PubMed  Google Scholar 

  • Entian KD & Gutowski-Eckel Z (1994) 2nd International Workshop on Lantibiotics, Arnhem November 20–23

  • Felmlee T, Pellet S, Lee Y & Welch RA (1985) Nucleotide sequence of an Escherichia chromosomal hemolysin. J. Bacteriol. 163: 94–105

    PubMed  Google Scholar 

  • Garrido MC, Herrero M, Kolter R & Moreno F (1988) The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBO J. 7: 1853–1862

    PubMed  Google Scholar 

  • Gilson E, Nakaido H & Hofnung M (1982) Sequence of the malK gene in E. coli K12. Nucleic Acids Res. 10: 7449–7458

    PubMed  Google Scholar 

  • Gros P, Croop J & Housman D (1986) Mammalian multi-drug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380

    Article  PubMed  Google Scholar 

  • Gross E & Morell JL (1971) The structure of nisin. J. Am. Chem. Soc. 93: 4634–4635

    PubMed  Google Scholar 

  • Gross E & Kiltz H (1973) The number and nature of α,β-unsaturated amino acids in subtilin. Biochem. Biophys. Res. Commun. 50: 559–565

    PubMed  Google Scholar 

  • Gutowski-Eckel Z, Klein C, Siegers K, Bohm K, Hammelmann M & Entian KD (1994) Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 60: 1–11

    PubMed  Google Scholar 

  • Hansen JN, Chung YJ, Liu W. Steen MT (1991) Biosynthesis and mechanism of action of nisin and subtilin. In: Jung G & Sahl HG (Eds) Nisin and Novel Lantibiotics. (pp 309–319) ESCOM Science Publishers, Leiden, The Netherlands

    Google Scholar 

  • Higgins CF, Hiles ID, Whalley K & Jamieson DJ (1985) Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J. Mol. Biol. 195: 125–142

    Google Scholar 

  • Hirsch A & Grindsted E (1951) The differentiation of the lactic streptococci and their antibiotics. J. Dairy Res. 18: 198–204

    Google Scholar 

  • Horn N, Swindell S, Dodd H & Gasson MJ (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129–135

    Article  PubMed  Google Scholar 

  • Hurst A (1981) Nisin. Adv. Appl. Microbiol. 27: 85–123

    Google Scholar 

  • Kaletta C & Entian KD (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacteriol. 171: 1597–1601

    PubMed  Google Scholar 

  • Kaletta C, Klein C, Schnell N & Entian KD (1991) An operon-like structure of genes involved in subtilin biosynthesis. In: Jung G & Sahl HG (Eds) Nisin and Novel Lantibiotics. (pp 309–319) ESCOM Science Publishers, Leiden, The Netherlands

    Google Scholar 

  • Klein C & Entian KD (1994) Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol. 60: 2793–2801

    PubMed  Google Scholar 

  • Klein C & Entian KD (1994b) 2 nd International Workshop on Lantibiotics, Arnhem November 20–23

  • Klein C, Kaletta C & Entian KD (1993) Biosynthesis of lantibiotic subtilin is regulated by a histidien kinase/response regulator system. Appl. Environ. Microbiol. 59: 296–303

    PubMed  Google Scholar 

  • Klein C, Kaletta C, Schnell N & Entian KD (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132–142

    PubMed  Google Scholar 

  • Klijn N, Weerkamp AH & DeVos WM (1995) Detection and characterization of lactose utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol. 61: 788–792

    PubMed  Google Scholar 

  • Kraft R & Leinwand LA (1987) Sequence of the complete P protein gene and part of the M protein gene from the histidine transport operon of Escherichia coli compared to that of Salmonella typhimurium. Nucleic Acids Res. 15: 8568

    PubMed  Google Scholar 

  • Koide Y, Nakamura A, Uozomi T & Beppu T (1986) Cloning and sequencing of the major introcellular serine protease gene of Bacillus subtilis. J. Bacteriol. 167: 110–116

    PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, DeRuyter PCM, Luesink EJ & DeVos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299–27304

    Article  PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ & DeVos WM (1993a) Characterization of the Tn5276-located nisin gene cluster nis-ABTCIPR of Lactococcus lactis and evidence for the involvement of expression of nisl and nisA in producer immunity. Eur. J. Biochem. 216: 281–291

    PubMed  Google Scholar 

  • Kuipers OP, Rollema HS, DeVos WM & Siezen RJ (1993b) Biosynthesis and secretion of precursor of nisin Z by Lactococcus lactis directed by the leader peptide of subtilin. FEBS Lett. 330: 23–27

    Article  PubMed  Google Scholar 

  • Kuipers OP, Rollema HS, Yap WGMJ, Boot HJ, Siezen RJ & DeVos WM (1992) Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J. Biol. Chem. 267: 24340–24346

    PubMed  Google Scholar 

  • MacFarlane SA & Merrick M (1985) The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic. Acids Res. 13: 7591–7606

    PubMed  Google Scholar 

  • Mattick ATR & Hirsch A (1944) A powerful inhibitory substance produced by group N streptococci. Nature (Lond.) 154: 551

    Google Scholar 

  • Mattick ATR & Hirsch A (1947) Further observation on an inhibitory sustance (nisin) from lactic streptococci. Lancet ii: 5–12

    Article  Google Scholar 

  • Meloun B, Baudys M, Kostka V, Hausdorf G, Frommel C & Hohne WE (1985) Complete primary structure of thermitase from thermoactinomyces vulgaris and its structural features related to the subtilisin-like proteinases. FEBS Lett. 183: 195–200

    Article  Google Scholar 

  • Moran CPJr (1990) Expression of sigma A and sigma H regulons during stationary phase and endospore formation. In: Zukowski MM, Gansesam AT & Hoch JA (Eds) Genetics and Biotechnology of Bacilli, Vol 3 (pp 287–294). Academic Press, Inc., San Diego

    Google Scholar 

  • Mulders JWM, Boerrigter IJ, Rollema HS, Siezen RJ & DeVos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581–584

    PubMed  Google Scholar 

  • Pugsley AP (1988) The immunity and lysis genes of ColN plasmid pCHAP4. Mol. Gen. Genet. 211: 335–341

    PubMed  Google Scholar 

  • Rauch PJG, Beerthuyzen MM & DeVos WM (1990) Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucl. Acids Res. 18: 4253–4254

    PubMed  Google Scholar 

  • Rauch PJG, Beerthuyzen MM & DeVos WM (1994) Distribution and evolution of nisin sucrose elements in Lactococcus lactis. Appl. Environ. Microbiol. 60: 1798–1804

    PubMed  Google Scholar 

  • Rauch PJG & DeVos WM (1992a) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its integration in Lactococcus lactis. J. Bacteriol. 174: 1280–1287

    PubMed  Google Scholar 

  • Rauch PJG & DeVos WM (1992b) Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose operon. Gene 121: 55–61

    Article  PubMed  Google Scholar 

  • Rauch PJG & DeVos WM (1994) Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J. Bacteriol. 176: 2165–2171

    PubMed  Google Scholar 

  • Rauch PJG, Kuipers OP, Siezen RJ & DeVos WM (1994) Genetics and protein engineering of nisin. In: DeVuyst L & Vandamme J (eds) Bacteriocins of Lactic Acid Bacteria. (pp 223–249) Chapmann & Hall, London

    Google Scholar 

  • Rayman K & Hurst A (1984) Nisin: properties, biosynthesis, and fermentation. In: Vandamme EJ (Ed) Biotechnology of Industrial Antibiotics. (pp 607–628) Marcel Dekker, New York

    Google Scholar 

  • Reisinger P, Seidel H, Tschesche H & Hammes W (1980) The effect of nisin on murein synthesis. Arch. Microbiol. 127: 187–193

    PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavic N, Chou JL & Drumm ML (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073

    PubMed  Google Scholar 

  • Ruhr E & Sahl HG (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. J. Bacteriol. 162: 833–836

    PubMed  Google Scholar 

  • Sahl HG, Kordel M & Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by peptide antibiotic nisin. Arch. Microbiol. 149: 120–124

    PubMed  Google Scholar 

  • Sanders DA & Koshland DEJr (1988) Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 85: 8425–8429

    PubMed  Google Scholar 

  • Saris PEJ (1994) 2nd International Workshop on Lantibiottics, Arnhem November 20–23

  • Schnell N, Entian KD, Götz F, Hörner T, Kellner R & Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature (Lond.) 333: 276–278

    Google Scholar 

  • Seki T, Yoshikawa H, Takahashi H & Saito H (1988) Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol. 170: 5935–5938

    PubMed  Google Scholar 

  • Siegers K & Entian KD (1994) 2nd International Workshop on Lantibiotics, Arnhem November 20–23

  • Siegers K & Entian KD (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61: 1082–1089

    PubMed  Google Scholar 

  • Siegers K, Heinzmann S & Entian KD (1995) Biosynthesis of the lantibiotic nisin: poststranslational modification of the prepeptide occurs at a multimeric membrane associated lanthionine synthetase complex. Submitted for publication

  • Siezen RJ, DeVos WM, Leunissen JAM & Dijkstra BW (1991) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 4: 719–737

    PubMed  Google Scholar 

  • Siezen RJ, Rollema HS, Kuipers OP & DeVos MW (1995) Homology modelling of the Lactococcus lactis leader peptidase NisP and its interaction with the precursor of the lantibiotic nisin. Protein Eng. 8: 117–125

    PubMed  Google Scholar 

  • Song HY & Cramer WA (1991) Membrane topography of ColEl gene products: the immunity protein. J. Bacteriol. 173: 2935–2943

    PubMed  Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    PubMed  Google Scholar 

  • Thompson J, Nguyen NY, Sackett DL & Donkersloot JA (1991) Transposon-encoded sucrose metabolism in Lactococcus lactis. J. Biol. Chem. 266: 1473–1479

    Google Scholar 

  • Van derMeer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP & DeVos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and inisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175: 2578–2588

    PubMed  Google Scholar 

  • Van derMeer JR, Rollema HS, Siezen RJ, Kuipers OP & DeVos WM (1994) Analysis of the nisin leader peptide sequence on nisin biosynthesis in Lactococcus lactis by site directed metugenesis. J. Biol. Chem. 60: 587–593

    Google Scholar 

  • Van deVen FJM, Van denHooven HW, Konings RNH & Hilbers CW (1991) NMR studies of lantibiotics: the structure of nisin in aqueous solution. Eur. J. Biochem. 202: 1181–1188

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entian, KD., de Vos, W.M. Genetics of subtilin and nisin biosyntheses. Antonie van Leeuwenhoek 69, 109–117 (1996). https://doi.org/10.1007/BF00399416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399416

Key words

Navigation