Skip to main content
Log in

Adaptive nature of chromosomal rearrangement: differential fitness in pocket gophers

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A chromosomal centric fusion polymorphism in populations of the plains pocket gopher, Geomys bursarius, was studied to determine the relative fitness associated with the karyotypic phenotypes. There was a greater number of heterozygous individuals than expected χ1 2=8.58, P=0.001. Calculations indicate that the viabilities of the two chromosomal homozygotes were only 35 and 76 percent or that of the heterozygote. Differences in fitness values for the chromosomal morphs for Geomys strongly emphasize the possible adaptive nature of the karyotype and provides a primary mechanism for chromosomal evolution, even in species composed of demes of relatively large size. This is the first case of positive chromosomal heterosis in vertebrates. The plains pocket gopher can now be added to the few empirically documented samples of balanced polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atchley, W. R. & Woodruff, D. S., 1981. Eds. Evolution and speciation. Cambridge Univ. Press, New York. pp. 1–424.

    Google Scholar 

  • Baker, R. J., 1967. Karyotypes of bats of the family Phyllostomidae and their taxonomic implications. Southwestern Nat. 12: 407–428.

    Google Scholar 

  • Bengtsson, B. O. & Bodmer, W. F., 1976. On the increase of chromosome mutations under random mating. Theor. Popul. Biol. 9: 260–281.

    Google Scholar 

  • Bickham, J. W. & Baker, R. J., 1979. Canalization model of chromosomal evolution. p. 70–84. In: Models and methodologies in evolutionary theory (J. H. Swartz & H. G. Rollins, eds). Bull. Carnegie Mus. Nat. Hist. 13: 105 pp.

  • Bush, G., 1981. Stasipatric speciation and rapid evolution in animals. p. 201–218. In: Evolution and speciation (W. R. Atchley & D. S. Woodruff, eds). Cambridge Univ. Press, N. Y., 424 pp.

    Google Scholar 

  • Bush, G. L., Case, S. M., Wilson, A. C. & Patton, J. L., 1977. Rapid speciation and chromosomal evolution in mammals. Proc. natn. Acad. Sci. U.S.A. 74: 3942–3946.

    Google Scholar 

  • Dobzhansky, T. H., 1970. Genetics of the evolutionary process. Columbia Univ. Press, N. Y.

    Google Scholar 

  • John, B., 1981. Chromosome change and evolutionary change: a critique. In: Evolution and speciation, (W. R. Atchley & Woodruff, D. S. eds). Cambridge Univ. Press, N. Y., 424 pp.

    Google Scholar 

  • John, B. & Lewis, K. R., 1957. Studies on Periplaneta americana. I. Experimental analysis of male meiosis. Heredity 11: 1–9.

    Google Scholar 

  • John, B. & Lewis, K. R., 1958. Studies on Periplaneta americana. III. Selection for heterozygosity. Heredity 12: 185–197.

    Google Scholar 

  • John, B. & Lewis, K. R., 1959. Selection for interchange heterozygosity in an inbred culture of Blaberus discoidalis (Serville). Genetics 44: 251–267.

    Google Scholar 

  • Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.

    Google Scholar 

  • Lewis, K. R. & John, B., 1957. Studies on Periplaneta americana. II. Interchange heterozygosity in isolated populations. Heredity 11: 11–22.

    Google Scholar 

  • Lewontin, R. C., 1974. The genetic base of evolutionary change. Columbia Univ. Press, N. Y.

    Google Scholar 

  • Patton, J. C., Baker, R. J. & Genoways, H. H., 1980. Apparent chromosomal heterosis in a fossorial mammal. Am. Nat. 116: 143–146.

    Google Scholar 

  • Penney, D. F. & Zimmerman, F. G., 1976. Genic divergence and local population differentiation by random drift in the pocket gopher genus Geomys. Evolution 30: 473–483.

    Google Scholar 

  • Sclander, R. K., Kaufman, D. W., Baker, R. J. & Williams, S. L., 1974. Genic and chromosomal differentiation in pocket gophers of the Geomys bursarius group. Evolution 28: 557–564.

    Google Scholar 

  • Templeton, A. R., 1980. Modes of speciation and inferences based on genetic distances. Evolution 34: 719–729.

    Google Scholar 

  • Templeton, A. R., 1981. Evolutionary change. Science 214: 900.

    Google Scholar 

  • Vosselman, L. & Van Heemert, C., 1980. Meiotic disjunction and embryonic lethality in sex-linked double-translocation heterozygous males of the onion fly, Hylemya antiqua (Meigen) Theor. appl. Genet. 58: 161–167.

    Google Scholar 

  • White, M. J. D., 1978. Modes of speciation. Freeman, San Francisco. 455 pp.

    Google Scholar 

  • Wilson, A. C., Bush, G. L., Case, S. M. & King, M. C., 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. natn. Acad. Sci. U.S.A. 72: 5061–5065.

    Google Scholar 

  • Wilson, E. O. & Bossert, W. H., 1971. A primer of population biology. Sinauer, Stanford, Conn., pp. 52.

    Google Scholar 

  • Zimmerman, E. G. & Gayden, N. A., 1981. Analysis of genic heterogeneity among local populations of the pocket gopher, Geomys bursarius. In: Mammalian population genetics (M. H. Smith & J. Joule, eds), Univ. of Georgia Press, Athens. 380 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, R.J., Chesser, R.K., Koop, B.F. et al. Adaptive nature of chromosomal rearrangement: differential fitness in pocket gophers. Genetica 61, 161–164 (1983). https://doi.org/10.1007/BF00123719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123719

Keywords

Navigation