Skip to main content

Chain-modified radioiodinated fatty acids

  • Chapter
Noninvasive Imaging of Cardiac Metabolism

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 55))

  • 38 Accesses

Abstract

Myocardial perfusion has been experimentally and clinically evaluated by intravenously administered gamma-emitting radiopharmaceuticals such as thallium-201 (201Tl). Evaluation of myocardial metabolism using radiopharmaceuticals as an alternative to and/or a complement of perfusion is desirable. Metabolic studies could have clinical applications in early detection of heart disease and serial monitoring of the effects of therapy. Since fatty acids constitute the major energy source of heart tissue through β-oxidation catabolism and since they are efficiently extracted from the blood by the heart, efforts have been made to radiolabel these acids and to evaluate them in normal and damaged heart tissue. Although the myocardium extracts and metabolizes both odd and even numbered carbon chain lengths as well as both saturated and unsaturated fatty acids, the acids primarily metabolized are the 16-carbon saturated palmitic acid (x=14 in the formula below), the 18-carbon saturated stearic acid (x=16) and the 18-carbon unsaturated oleic acid (x=y=7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Evans J R, Gunton R W, Baker R G et al (1965) Use of radioiodinated fatty acid for photoscans of the heart. Circ Res 16: 1–10

    PubMed  CAS  Google Scholar 

  2. Poe N D, Robinson G D Jr, MacDonald N S (1975) Myocardial extraction of labelled long-chain fatty acid analogs. Proc Soc Exp Biol Med 148: 215–218

    PubMed  CAS  Google Scholar 

  3. Robinson G D Jr, Lee A W (1975) Radioiodinated fatty acids for heart imaging: iodine monochloride addition compared with iodide replacement labeling. J Nucl Med 16: 17–21

    PubMed  CAS  Google Scholar 

  4. Bonte F J, Graham K D, Moore J G (1973) Experimental myocardial imaging with 131I-labeled oleic acid. Radiology 108: 195–196

    PubMed  CAS  Google Scholar 

  5. Gunton R W, Evans J R, Baker R G et al. (1965) Demonstration of myocardial infarction by photoscans of the heart in man. Am J Cardiol 16: 482–487

    Article  PubMed  CAS  Google Scholar 

  6. Machulla H-J, Stöcklin G, Kupfernagel C et al. (1978) Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communication. J Nucl Med 19: 298–302

    PubMed  CAS  Google Scholar 

  7. Hock A, Freundlieb C, Vyska K et al. (1983) Myocardial imaging and studies with (17–123I)iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy. J Nucl Med 24: 22–28

    PubMed  CAS  Google Scholar 

  8. van der Wall E E, Heidendal G A, den Hollander W et al. (1983) Myocardial scintigraphy with 123I-labelled heptadecanoic acid in patients with unstable angina pectoris. Postgrad Med J 59, (Suppl 3): 38–40

    PubMed  Google Scholar 

  9. Robinson G D Jr (1977) Synthesis of 123I-16-iodo-9-hexadecenoic acid and derivatives for use as myocardial perfusion imaging agents. Int J Appl Rad Isot 28: 149–155

    Article  CAS  Google Scholar 

  10. Poe N D, Robinson G D Jr, Graham L S et al. (1976) Experimental basis for myocardial imaging with 123I-labeled hexadecenoic acid. J Nucl Med 17: 1077–1082

    PubMed  CAS  Google Scholar 

  11. Poe N D, Robinson G D Jr, Zielinski F W et al. (1977) Myocardial imaging with 123I-hexadecenoic acid. Radiology 124: 419–424

    PubMed  CAS  Google Scholar 

  12. Rocquelin G, Sergiel J P, Martin B et al. (1971) Nutritive value of refined rapeseed oils: Review. J Am Oil Chem Soc 48: 728–732

    Article  CAS  Google Scholar 

  13. Beare-Rogers J L, Nera E A (1972) Cardiac fatty acids and histopathology of rats, pigs, monkeys and gerbils fed rapeseed oil. Comp Biochem Physiol 41B: 793–800

    Google Scholar 

  14. Beare-Rogers J L, Nera E A, Craig B M (1972) Accumulation of cardiac fatty acids in rats fed synthesized oils containing C22 fatty acids. Lipids 7: 46–50

    Article  PubMed  CAS  Google Scholar 

  15. Engfelt B (ed) (1976) Morphological and biochemical effects of orally administered rapeseed oil in rat myocardium. Acta Med Scand. (Suppl) 585: 1–86

    Google Scholar 

  16. Christiansen R Z, Christophersen B O, Bremer J (1977) Monoethylenic C20 and C22 fatty acids in marine oil and rapeseed oil. Studies on their oxidation and on their relative ability to inhibit palmitate oxidation in heart and liver mitochondria. Biochim Biophys Acta 487: 28–36

    PubMed  CAS  Google Scholar 

  17. Cheng C-K, Pande S V (1975) Erucic acid metabolism by rat heart preparations. Lipids 10: 335–339

    Article  PubMed  CAS  Google Scholar 

  18. Christophersen B O, Christiansen R Z (1975) Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria. Biochim Biophys Acta 388: 402–412

    PubMed  CAS  Google Scholar 

  19. Ishinaga M, Sato J, Kitigawa Y et al. (1982) Perturbation of phospholipid metabolism by erucic acid in male Sprague-Dawley rat heart. J Biochem (Tokyo) 92: 253–263

    CAS  Google Scholar 

  20. Vasdev S C, Kako K J (1977) Incorporation of fatty acids into rat heart lipids. In vivo and in vitro studies. J Mol Cell Cardiol 9: 617–631

    Article  PubMed  CAS  Google Scholar 

  21. Ong N, Bezard J, LeCerf J (1977) Incorporation and metabolic conversion of erucic acid in various tissue of the rat in short term experiments. Lipids 12: 563–569

    Article  PubMed  CAS  Google Scholar 

  22. Otto C A, Brown L E, Wieland D M et al. (1981) Radioiodinated fatty acid for myocardial imaging: effects of chain length. J Nucl Med 22: 613–618

    PubMed  CAS  Google Scholar 

  23. Kloster G, Stöcklin G (1982) Determination of the rate-determining step in halofatty acid turnover in the heart. Radioakt Isot Klin Forsch 15: 235–241

    CAS  Google Scholar 

  24. Stocklin G (1982) Evaluation of radiohalogen labelled fatty acids for heart studies. Nuklearmedizin (Suppl) 19: 229–304

    Google Scholar 

  25. Otto C A, Brown L E, Wieland D M et al. (1981) Synthesis of 125I-labeled 14-iodo-9-tetradecynoic acid. J Labeled Compd Radiopharm 18: 1347–1355

    Article  CAS  Google Scholar 

  26. Helmkamp G M Jr, Rando R R, Brock D J H et al. (1968) β-Hydroxydecanoyl thioester dehydrase. J Biol Chem 243: 3229–3231

    PubMed  CAS  Google Scholar 

  27. Endo K, Helmkamp G M Jr, Bloch K (1970) Mode of inhibition of β-hydrocydecanoyl thioester dehydrase by 3-decynoyl-N-acetylcysteamine. J Biol Chem 245: 4293–4296

    PubMed  CAS  Google Scholar 

  28. Sherratt H S A, Holland P C, Osmundsen H et al. (1975) On the mechanism of inhibition of fatty acid oxidation by hypoglycin and by pent-4-enoic acid. In: Kean E A (ed) Hypoglycin: Proceedings of a Symposium, Kingston, Jamaica, Vol. 3. New York: Academic Press, p 127

    Google Scholar 

  29. Sherratt H S A, Osmundsen H (1976) Commentary on the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharm 25: 743–750

    Article  PubMed  CAS  Google Scholar 

  30. Osmundsen H (1978) Effects of pent-4-enoate on flux through acyl-CoA dehydrogenases of p-oxidation in intact rat liver mitochondria. FEBS Lett 88: 219–222

    Article  CAS  Google Scholar 

  31. Fong J C, Schulz H (1978) On the rate-determining step of fatty acid oxidation in heart. J Biol Chem 253: 6917–6922

    PubMed  CAS  Google Scholar 

  32. Holland P C, Senior A E, Sherratt H S A (1973) Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Biochem J 136: 173–184

    PubMed  CAS  Google Scholar 

  33. Holland P C, Sherratt H S A (1973) Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Biochem J 136: 157–171

    PubMed  CAS  Google Scholar 

  34. Schulz H (1983) Metabolism of 4-pentenoic acid and inhibition of thiolase by metabolites of 4-pentenoic acid. Biochemistry 22: 1827–1832

    Article  PubMed  CAS  Google Scholar 

  35. Lippel K, Carpenter D, Gunstone F D. (1973) Activation of long chain fatty acids by subcellular fractions of rat liver. III. Effect of ethylenic bond position on acyl-CoA formation of cis-octadecenoates. Lipids 8: 124–128

    Article  PubMed  CAS  Google Scholar 

  36. Lippel K. Gunsone F D, Barve J A (1973) Activation of long chain fatty acids by subcellular fractions of rat liver. II. Effect of ethylenic bond position on acyl-CoA formation of trans-octadecenoates. Lipids 8: 119–123

    Article  PubMed  CAS  Google Scholar 

  37. Reitz R C, El-Sheikh M, Lands W E M et al (1969) Effects of ethylenic bond position upon acyltransferase activity with isomeric cis-octadecenoyl coenzyme A thiol esters. Biochim Biophys Acta 176: 480–490

    PubMed  CAS  Google Scholar 

  38. Sgoutas D, Jones R, Befanis P. (1976) In vitro incorporation of isomeric cis-octadecanoic acids by rat liver mitochondria. Biochim Biophys Acta 441: 14–24

    PubMed  CAS  Google Scholar 

  39. Sgoutas D S (1971) Comparative studies on the hydrolysis of odd-chain and even-chain fatty acid cholesterol esters by rat liver sterol-ester hydrolase. Biochim Biophys Acta 239: 469–474

    PubMed  CAS  Google Scholar 

  40. Goller H J, Sgoutas D S (1970) Further studies on the fatty acid specificity of rat liver sterol-ester hydrolase. Biochem 9: 4801–4806

    Article  CAS  Google Scholar 

  41. Willebrands A F, van der Veen K J (1966) The metabolism of elaidic acid in the perfused rat heart. Biochim Biophys Acta 116: 583–585

    PubMed  CAS  Google Scholar 

  42. Bergström S, Borgström B, Tryding N. (1954) Intestinal absorption and metabolism of 2,2-dimethylstearic acid in the rat. Biochem J 58: 604–608

    PubMed  Google Scholar 

  43. Tryding N, Westöö G (1956) Synthesis and metabolism of 2,2-dimethylnonadecanoic acid. Acta Chem Scand 10: 1234–1242

    Article  CAS  Google Scholar 

  44. Goodman D S, Steinberg D (1958) Studies in the metabolism of 3,3-dimethyl phenylmyristic acid, a nonoxidizable fatty acid analogue. J Biol Chem 233: 1066–1071

    PubMed  CAS  Google Scholar 

  45. Otto C A, Brown L E, Wieland D M et al(1981) Structure-distribution study of I-125-ω-iodofatty acids. J Labelled Compd Radiopharm 18: 43–44

    Article  Google Scholar 

  46. Livni E, Elmaleh D R, Levy S et al. (1982) Beta-methyl(1-11C)heptadecanoic acid: a new myocardial metabolic tracer for positron emission tomography. J Nucl Med 23: 169–175

    PubMed  CAS  Google Scholar 

  47. Elmaleh D R, Livni E, Levy S et al. (1983) Comparison of 11Cand 14C-labeled fatty acids and their (3-methyl analogs. Int J Nucl Med Biol 10: 181–187

    Article  PubMed  CAS  Google Scholar 

  48. Otto C A, Brown L E, Scott A M (1984) Radioiodinated branched chain fatty acids: substrates for beta oxidation? Concise communication. J Nucl Med 25: 75–80

    PubMed  CAS  Google Scholar 

  49. Goodman M M, Knapp F F Jr, Callahan A P et al. (1982) Synthesis and biological evaluation of 17-(131I)iodo-9-telluraheptadecanoic acid, a potential new myocardial imaging agent. J Med Chem 25: 613–618

    Article  PubMed  CAS  Google Scholar 

  50. Otto C A, unpublished data

    Google Scholar 

  51. Machulla H-J, Marsmann M, Dutschka K (1980) Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 5: 171–173

    Article  PubMed  CAS  Google Scholar 

  52. Coenen H H, Harmand M-F, Kloster G et al. (1981) 15(p-(75Br)bromophenyl)pentadecanoic acid: pharmacokinetics and potential as heart agent. J Nucl Med 22: 891–896

    PubMed  CAS  Google Scholar 

  53. Machulla H-J, Marsmann, Dutschka K et al. (1980) Radiopharmaceuticals. II. Radiobromination of phenylpentadecanoic acid and biodistribution in mice. Radiochem Radional Lett 42: 243–250

    CAS  Google Scholar 

  54. Machulla H J, Dutschka K, van Beuningen D et al. (1981) Development of 15-(p-iodine-123- pehyl)-pentadecanoic acid for in vivo diagnosis of the myocardium. J Radioanal Chem 65: 279–286

    Article  CAS  Google Scholar 

  55. Goodman M M, Kirsch G, Knapp F F Jr (1984) Synthesis and evaluation of radioiodinated terminal P-iodophenyl-substituted α- and β-methyl-branched fatty acids. J Med Chem 27: 390–397

    Article  PubMed  CAS  Google Scholar 

  56. Otto C A, Brown L E, Lee H: Subcellular distribution of (125I)iodoaryl beta-methyl fatty acids. Accepted for publication by Int J Nucl Med Biol

    Google Scholar 

  57. Yonekura Y, Brill A B, Som P et al. (1985) Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 227: 1494–1496

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Otto, C.A. (1987). Chain-modified radioiodinated fatty acids. In: van der Wall, E.E. (eds) Noninvasive Imaging of Cardiac Metabolism. Developments in Cardiovascular Medicine, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3287-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3287-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7976-1

  • Online ISBN: 978-94-009-3287-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics