Skip to main content

Harvesting, Thickening and Dewatering Microalgae Biomass

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

The recovery and processing of microalgae biomass from a culture media is an essential component for the production of almost all microalgae products. Microalgae recovery techniques can be used individually (single-stage) or in combination (multi-stage) and the choice is often dependent on the species of microalgae, desired product concentration and product quality. A wide range of solid-liquid separation techniques is available and this chapter compares the technologies and assess the technical and economic considerations for each option. The major challenge in selecting an appropriate technology for biofuels production from microalgae is that traditional microalgae concentration processes have generally used energy-intensive unit operations that are expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbelaez J, Koopman B, Lincoln EP (1983) Effects of dissolved oxygfen and mixing on algal autoflotation. J Water Pollut Control Fed 55:1075–1079

    CAS  Google Scholar 

  • Becker EW (1994) Microalgae: Biotechnology and microbiology. Cambridge University Press, New York

    Google Scholar 

  • Benemann J, Koopman B, Weissman J, Eisenbery D, Goebel R (1980) Development of microalgae harvesting and high-rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 457–495

    Google Scholar 

  • Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers – effects of medium salinity. Biomass 17:65–76

    Article  CAS  Google Scholar 

  • Boele HA (2008) Separating device and method. European Patent EP2178617B1

    Google Scholar 

  • Borowitzka MA (1999) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  • Crites RW, Reed SC, Middlebrooks EJ (2005) Natural wastewater treatment systems. CRC Press, Boca Raton

    Google Scholar 

  • Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2005) Water treatment: principles and design, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84:1078–1083

    Article  CAS  Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. A report to IEA bioenergy task 39. Report T39-T2. http://www.globalbioenergy.org/uploads/media/1008_IEA_Bioenergy_-_Current_status_and_potential_for_algal_biofuels_production.pdf

  • de Rijk SE, van der Graff JHJM, den Blanken JG (1994) Bubble size in flotation thickening. Water Res 28:465–473

    Article  Google Scholar 

  • Eisenberg DM, Koopman B, Benemann JR, Oswald WJ (1981) Algal bioflocculation and energy conservation in microalgal sewage ponds. Biotech Bioenerg Symp 11:429–448

    Google Scholar 

  • Féris LA, Rubio J (1999) Dissolved air flotation (DAF) at low saturation pressures. Filtr Sep 36:61–65

    Article  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2011) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-011-9294-x

  • Golueke C, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Pollut Control Fed 37:471–498

    Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquacult Res 31:637–659

    Article  Google Scholar 

  • Henderson R, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42:1827–1845

    Article  CAS  Google Scholar 

  • Irving L (1926) The precipitation of calcium and magnesium from sea water. J Mar Biol Assoc UK 14:441–446

    Article  CAS  Google Scholar 

  • Isogami H, Saho N, Morita M, Takagi T (2001) Sewage treatment performance of a continous superconducting-magnetic separator. JSME Int J Ser B 44:675–679

    Article  Google Scholar 

  • Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high-rate pond effluents. Agric Waste 5:231–246

    Article  Google Scholar 

  • Lee A, Lewis D, Ashman P (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Harvesting of algae by froth flotation. Appl Environ Microbiol 10:169–175

    CAS  Google Scholar 

  • Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030

    Article  CAS  Google Scholar 

  • MacKay D, Salusbury T (1988) Choosing between centrifugation and crossflow mircofiltration. Chem Eng 477:45–50

    Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterisation of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386

    Article  CAS  Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 547–571

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  • Mohn FH, Contreras OC (1990) Harvesting of the alga Dunaliella – some considerations concerning its cultivation and impact on the production costs of β-carotene. Berichte des Forschungszentrums Jülich 2438:1–50

    Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and meta­bolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 215–251

    Google Scholar 

  • Nakamura T, Senior CL, Olaizola M, Bridges T, Flores S, Sombardier L, Masutani SM (2005) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae. US Department of Energy, National Energy Technology Laboratory, Pittsburgh

    Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissuma using cell coagulants. J Appl Phycol 22:349–355

    Article  CAS  Google Scholar 

  • Petrusevski B, Boiler G, Van Brennmen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1418–1424

    Article  Google Scholar 

  • Pushparaj B, Pelosi E, Torzillo G, Materassi R (1993) Microbial biomass recovery using a synthetic cationic polymer. Bioresour Technol 43:59–62

    Article  CAS  Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen P, Quéméneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquac Eng 20:191–208

    Article  Google Scholar 

  • Shammas NK (2005) Coagulation and flocculation. In: Wang LK, Hung Y-T, Shammas NK (eds) Physicochemical treatment processes. Handbook of environmental engineering, vol 3. The Humana Press, Totowa, pp 103–139

    Chapter  Google Scholar 

  • Shammas NK, Wang LK (2007) Belt filter presses. In: Wang LK, Shammas NK, Hung Y-T (eds) Biosolids treatment processes. The Humana Press, Totowa, pp 519–539

    Chapter  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from algae. National Renewable Energy Laboratory: Golden, Colorado. NREL/TP-580-24190, pp 1–328

    Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgal harvesting and processing: a literature review. US Department of Energy: Golden Colorado. SERI/STR-231-2396, pp 1–65

    Google Scholar 

  • Shipin OV, Meiring PGJ, Phaswana R, Kluever H (1988) Integrating ponds and activated sludge process in the PETRO concept. Water Res 15:187–199

    Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15:187–199

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse (Metcalf & Eddy), 4th edn. McGraw-Hill, Boston, New York

    Google Scholar 

  • Tilton RC, Murphy J (1972) The flocculation of algae with synthetic polymeric flocculants. Water Res 6:155–164

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Eng 2(1):012701. doi:10.1063/1.3294480

    Article  Google Scholar 

  • Uduman N, Bourniquel V, Danquah MK, Hoadley AFA (2011) A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J 174:249–257

    Article  CAS  Google Scholar 

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    Article  CAS  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15:233–247

    Article  Google Scholar 

  • Wang LK, Fahey EM, Wu Z (2005) Dissolved Air floatation. In: Wang LK, Hung Y-T, Shammas NK (eds) Physicochemical treatment processes. Handbook of environmental engineering, vol 3. The Humana Press, Totowa, pp 431–500

    Chapter  Google Scholar 

  • Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81:702–708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pahl, S.L., Lee, A.K., Kalaitzidis, T., Ashman, P.J., Sathe, S., Lewis, D.M. (2013). Harvesting, Thickening and Dewatering Microalgae Biomass. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_10

Download citation

Publish with us

Policies and ethics