Skip to main content

Signal Transduction Pathways Regulating Switching, Mating and Biofilm Formation in Candida albicans and Related Species

  • Chapter
  • First Online:
Biocommunication of Fungi

Abstract

The developmental programs of Candida albicans are complex and intertwined. They include hypha formation, white-opaque switching, mating and biofilm formation. Here, the regulation of the latter three programs are considered. White-opaque switching is repressed by the a1-α2 corepressors complex produced in a/α but not a/a or α/α cells, and regulated in the latter by WOR1, a master regulator of switching. Mating of opaque cells is regulated by pheromone induction of a MAP kinase pathway targeting the transcription factor Cph1. Biofilm formation by a/a and α/α cells is regulated by the same pheromone-induced MAP kinase pathway, but targets a different transcription factor, Tec1. And biofilm formation by a/α cells is regulated by the Ras1/cAMP pathway, the same pathway regulating hypha formation, but targets an additional transcription factor, Bcr1. Specific overlaps suggest quite interesting scenarios for the evolution of these pathways, most notably that for a/a and α/α biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JM, Soll DR (1987) Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol 169:5579–5588

    PubMed  CAS  Google Scholar 

  • Beh CT, Cool L, Phillips J, Rine J (2001) Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157:1117–1140

    PubMed  CAS  Google Scholar 

  • Bender A, Sprague GF Jr (1986) Yeast peptide pheromones, a-factor and alpha-factor, activate a common response mechanism in their target cells. Cell 47:929–937

    Article  PubMed  CAS  Google Scholar 

  • Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22:2505–2515

    Article  PubMed  CAS  Google Scholar 

  • Bennett RJ, Miller MG, Chua PR, Maxon ME, Johnson AD (2005) Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol Microbiol 55:1046–1059

    Article  PubMed  CAS  Google Scholar 

  • Biswas K, Morschhäuser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376

    Article  PubMed  CAS  Google Scholar 

  • Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP (2010) An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 6:e1000752

    Article  PubMed  CAS  Google Scholar 

  • Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1:19

    Article  PubMed  Google Scholar 

  • Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67

    PubMed  CAS  Google Scholar 

  • Chen J, Chen J, Lane S, Liu H (2002) A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Chenevert J, Valtz N, Herskowitz I (1994) Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae. Genetics 136:1287–1296

    PubMed  CAS  Google Scholar 

  • Cintia R, Rocha C, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643

    Google Scholar 

  • Clark KL, Feldmann PJ, Dignard D, Larocque R, Brown AJ, Lee MG, Thomas DY, Whiteway M (1995) Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. Mol Gen Genet 249:609–621

    Article  PubMed  CAS  Google Scholar 

  • Clemons KV, Park P, McCusker JH, McCullough MJ, Davis RW, Stevens DA (1997) Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates. J Clin Microbiol 35:1822–1828

    PubMed  CAS  Google Scholar 

  • Côte P, Sulea T, Dignard D, Wu C, Whiteway M (2011) Evolutionary reshaping of fungal mating pathway scaffold proteins. MBio 2:e00230-10

    Article  PubMed  CAS  Google Scholar 

  • Cross F, Hartwell LH, Jackson C, Konopka JB (1988) Conjugation in Saccharomyces cerevisiae. Annu Rev Cell Biol 4:429–457

    Article  PubMed  CAS  Google Scholar 

  • Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR (2006) Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J 25:2240–2252

    Article  PubMed  CAS  Google Scholar 

  • Davis D, Wilson RB, Mitchell AP (2000) RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978

    Article  PubMed  CAS  Google Scholar 

  • Dohlman HG (2002) G proteins and pheromone signaling. Annu Rev Physiol 64:129–152

    Article  PubMed  CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  PubMed  CAS  Google Scholar 

  • Douglas LJ (2009) Penetration of antifungal agents through Candida biofilms. Methods Mol Biol 499:37–44

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A (2011) Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 6:e16218

    Article  PubMed  CAS  Google Scholar 

  • Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573–581

    Article  PubMed  CAS  Google Scholar 

  • Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118

    Article  PubMed  CAS  Google Scholar 

  • Flanagan CA, Schnieders EA, Emerick AW, Kunisawa R, Admon A, Thorner J (1993) Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 262:1444–1448

    Article  PubMed  CAS  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    PubMed  CAS  Google Scholar 

  • Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6:e110

    Article  PubMed  Google Scholar 

  • Geiger J, Wessels D, Lockhart SR, Soll DR (2004) Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun 72:667–677

    Article  PubMed  CAS  Google Scholar 

  • Gendreau L, Loewy ZG (2011) Epidemiology and etiology of denture stomatitis. J Prosthodont 20:251–260

    Article  PubMed  Google Scholar 

  • Gottschling DE (1992) Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci USA 89:4062–4065

    Article  PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38:164–198

    PubMed  CAS  Google Scholar 

  • Hnisz D, Schwarzmüller T, Kuchler K (2009) Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol 74:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hnisz D, Majer O, Frohner IE, Komnenovic V, Kuchler K (2010) The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog 6(5):e1000889

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Wang H, Chou S, Nie X, Chen J, Liu H (2006) Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci USA 103:12813–12818

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO(2) regulates white-to-opaque switching in Candida albicans. Curr Biol 19:330–334

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 6:e1000806

    Article  PubMed  CAS  Google Scholar 

  • Hull CM, Johnson AD (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307–310

    Article  PubMed  CAS  Google Scholar 

  • Jones SK Jr, Bennett RJ (2011) Fungal mating pheromones: choreographing the dating game. Fungal Genet Biol 48:668–676

    Article  PubMed  CAS  Google Scholar 

  • Klar AJ, Srikantha T, Soll DR (2001) A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158:919–924

    PubMed  CAS  Google Scholar 

  • Kreft JU, Bonhoeffer S (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151(Pt3):637–641

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

    Article  PubMed  CAS  Google Scholar 

  • Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67:6652–6662

    PubMed  CAS  Google Scholar 

  • Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA 99:14907–14912

    Article  PubMed  CAS  Google Scholar 

  • Lane S, Birse C, Zhou S, Matson R, Liu H (1991) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996

    Article  CAS  Google Scholar 

  • Leng P, Lee PR, Wu H, Brown AJ (2001) Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 183:4090–4093

    Article  PubMed  CAS  Google Scholar 

  • Lingner J, Kellermann J, Keller W (1991) Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature 354:496–498

    Google Scholar 

  • Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Köhler J, Fink GR (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726, Erratum in: Science (1995) 267:271

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SR, Pujol C, Daniels KJ, Miller MG, Johnson AD, Pfaller MA, Soll DR (2002) In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737–745

    PubMed  CAS  Google Scholar 

  • Lockhart SR, Daniels KJ, Zhao R, Wessels D, Soll DR (2003a) Cell biology of mating in Candida albicans. Eukaryot Cell 2:49–61

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SR, Zhao R, Daniels KJ, Soll DR (2003b) Alpha-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell 2:847–855

    Article  PubMed  CAS  Google Scholar 

  • MacKay VL (1978) Mating-type specific pheromones as mediators of sexual conjugation in yeast. Symp Soc Dev Biol 35:243–259

    PubMed  Google Scholar 

  • Madden K, Snyder M (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52:687–744

    Article  PubMed  CAS  Google Scholar 

  • Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTL a and MTLalpha strains. Science 289:310–313

    Article  PubMed  CAS  Google Scholar 

  • Magee BB, Legrand M, Alarco AM, Raymond M, Magee PT (2002) Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46:1345–1351

    Article  PubMed  CAS  Google Scholar 

  • Malathi K, Ganesan K, Datta A (1994) Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants. J Biol Chem 269:22945–22951

    PubMed  CAS  Google Scholar 

  • Marjan W, Woude V, Bäumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    Google Scholar 

  • Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302

    Article  PubMed  CAS  Google Scholar 

  • Mishra PK, Baum M, Carbon J (2007) Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics 278:455–465

    Article  PubMed  CAS  Google Scholar 

  • Morrow B, Anderson J, Wilson J, Soll DR (1989) Bidirectional stimulation of the white-opaque transition of Candida albicans by ultraviolet irradiation. J Gen Microbiol 135:1201–1208

    PubMed  CAS  Google Scholar 

  • Morrow B, Srikantha T, Soll DR (1992) Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol 12:2997–3005

    PubMed  CAS  Google Scholar 

  • Morrow B, Srikantha T, Anderson J, Soll DR (1993) Coordinate regulation of two opaque-specific genes during white-opaque switching in Candida albicans. Infect Immun 61:1823–1828

    Google Scholar 

  • Mukherjee PK, Zhou G, Munyon R, Ghannoum MA (2005) Candida biofilm: a well-designed protected environment. Med Mycol 43:191–208

    Article  PubMed  CAS  Google Scholar 

  • Navarro-García F, Sánchez M, Pla J, Nombela C (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15:2197–2206

    PubMed  Google Scholar 

  • Neiman AM (2011) Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:737–765

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Mitchell AP (2009) Large-scale gene disruption using the UAU1 cassette. Methods Mol Biol 499:175–194

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63

    Article  PubMed  CAS  Google Scholar 

  • Noble SM, Johnson AD (2009) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4:298–309

    Article  CAS  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Bailliere Tindall, London

    Google Scholar 

  • Olaiya AF, Sogin SJ (1979) Ploidy determination of Candida albicans. J Bacteriol 140:1043–1049

    PubMed  CAS  Google Scholar 

  • Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, Soll DR (2004) The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot Cell 3:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Ramage G, VandeWalle K, López-Ribot JL, Wickes BL (2002) The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214:95–100

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhäuser J (2008) Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog 4:e1000089

    Article  PubMed  Google Scholar 

  • Reuss O, Vik A, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127

    Article  PubMed  CAS  Google Scholar 

  • Richard ML, Nobile CJ, Bruno VM, Mitchell AP (2005) Candida albicans biofilm-defective mutants. Eukaryot Cell 4(8):1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Sadhu C, Hoekstra D, McEachern MJ, Reed SI, Hicks JB (1992) A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor. Mol Cell Biol 12:1977–1985

    PubMed  CAS  Google Scholar 

  • Sahni N, Yi S, Daniels KJ, Srikantha T, Pujol C, Soll DR (2009) Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog 5:e1000601

    Article  PubMed  CAS  Google Scholar 

  • Sahni N, Yi S, Daniels KJ, Huang G, Srikantha T, Soll DR (2010) Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol 8:e1000363

    Article  PubMed  CAS  Google Scholar 

  • Schrick K, Garvik B, Hartwell LH (1997) Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 147:19–32

    PubMed  CAS  Google Scholar 

  • Schweizer A, Rupp S, Taylor BN, Röllinghoff M, Schröppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38:435–445

    Article  PubMed  CAS  Google Scholar 

  • Segall JE (1993) Polarization of yeast cells in spatial gradients of alpha mating factor. Proc Natl Acad Sci USA 90:8332–8336

    Article  PubMed  CAS  Google Scholar 

  • Shapiro RS, Cowen L (2010) Coupling temperature sensing and development: Hsp90 regulates morphogenetic signalling in Candida albicans. Virulence 1:45–48

    Article  PubMed  CAS  Google Scholar 

  • Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169:189–197

    PubMed  CAS  Google Scholar 

  • Smith AM, Fuchs RT, Grundy FJ, Henkin TM (2010) The SAM-responsive S(MK) box is a reversible riboswitch. Mol Microbiol 78:1393–1402

    Article  PubMed  CAS  Google Scholar 

  • Soll DR (1992) High-frequency switching in Candida albicans. Clin Microbiol Rev 5:183–203

    PubMed  CAS  Google Scholar 

  • Soll DR (2004) Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26:10–20

    Article  PubMed  CAS  Google Scholar 

  • Soll DR (2009) Why does Candida albicans switch? FEMS Yeast Res 9:973–989

    Article  PubMed  CAS  Google Scholar 

  • Soll DR (2011) Evolution of a new signal transduction pathway in Candida albicans. Trends Microbiol 19:8–13

    Article  PubMed  CAS  Google Scholar 

  • Soll DR, Anderson J, Bergen M (1991) The developmental biology of the white-opaque transition in Candida albicans. In: Prasad R (ed) Candida albicans: cellular and molecular biology. Springer, Berlin, pp 20–45

    Google Scholar 

  • Srikantha T, Soll DR (1993) A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131:53–60

    Article  PubMed  CAS  Google Scholar 

  • Srikantha T, Tsai LK, Daniels K, Soll DR (2000) EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J Bacteriol 182:1580–1591

    Article  PubMed  CAS  Google Scholar 

  • Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR (2001) The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183:4614–4625

    Article  PubMed  CAS  Google Scholar 

  • Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, Seringhaus MR, Gerstein M, Yi S, Snyder M, Soll DR (2006) TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell 5:1674–1687

    Article  PubMed  CAS  Google Scholar 

  • Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR (2012) Non-sex genes in the mating type locus (MTL) of Candida albicans play roles in a/α biofilm formation, permeability and drug resistance. PLoS Pathog 8:e1002476

    Google Scholar 

  • Stevenson JS, Liu H (2011) Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol Microbiol 81:1078–1091

    Article  PubMed  CAS  Google Scholar 

  • Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389–399

    Article  PubMed  CAS  Google Scholar 

  • van der Woude MW, Bäumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    Article  PubMed  CAS  Google Scholar 

  • Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585

    Article  PubMed  CAS  Google Scholar 

  • Whelan WL, Magee PT (1981) Natural heterozygosity in Candida albicans. J Bacteriol 145:896–903

    PubMed  CAS  Google Scholar 

  • Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    PubMed  CAS  Google Scholar 

  • Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR (2007) Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol 64:1587–1604

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Sahni N, Daniels KJ, Pujol C, Srikantha T, Soll DR (2008) The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol Biol Cell 19:957–970

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Sahni N, Pujol C, Daniels KJ, Srikantha T, Ma N, Soll DR (2009) A Candida albicans-specific region of the alpha-pheromone receptor plays a selective role in the white cell pheromone response. Mol Microbiol 71:925–947

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Sahni N, Daniels KJ, Lu KL, Huang G, Garnaas AM, Pujol C, Srikantha T, Soll DR (2011a) Utilization of the mating scaffold protein in the evolution of a new signal transduction pathway for biofilm development. MBio 2:e00237-10

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Sahni N, Daniels KJ, Lu KL, Srikantha T, Huang G, Garnaas AM, Soll DR (2011b) Alternative mating type configurations (a/α versus a/a or α/α) of Candida albicans result in alternative biofilms regulated by different pathways. PLoS Biol 9:e1001117

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Daniels KJ, Lockhart SR, Yeater KM, Hoyer LL, Soll DR (2005) Unique aspects of gene expression during Candida albicans mating and possible G(1) dependency. Eukaryot Cell 4:1175–1190

    Article  PubMed  CAS  Google Scholar 

  • Zordan RE, Galgoczy DJ, Johnson AD (2006) Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci USA 103:12807–12812

    Article  PubMed  CAS  Google Scholar 

  • Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD (2007) Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5:e256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Developmental Studies Hybridoma Bank, a NIH National Resource. The author is indebted to Drs. T. Srikantha, C. Pujol and K. Daniels for help in organizing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Soll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soll, D.R. (2012). Signal Transduction Pathways Regulating Switching, Mating and Biofilm Formation in Candida albicans and Related Species. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_6

Download citation

Publish with us

Policies and ethics