Skip to main content

Oxylipins in Fungal-Mammalian Interactions

  • Chapter
  • First Online:
Biocommunication of Fungi

Abstract

Oxylipins, or oxygenated fatty acids, are potent signaling molecules that assist in orchestrating fungal-mammalian interactions. These molecules are generated by several oxygenases, chiefly lipoxygenases, cyclooxygenases and dioxygenases. The fungal and mammalian oxygenases share many conserved domains resulting in the production of similar and even identical oxylipins. Mammalian oxylipins (more commonly called eicosinoids) are part of the immune response whereas fungal oxylipins direct growth and development of the producing organism. Importantly, oxylipins from both Kingdoms can be perceived and recognized by each organism, impacting fungal-mammalian interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alem MAS, Douglas LJ (2005) Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 54:1001–1005. doi:10.1099/jmm.0.46172-0

    Article  PubMed  CAS  Google Scholar 

  • Barrett NA, Maekawa A, Rahman OM et al (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119–1128

    PubMed  CAS  Google Scholar 

  • Biondo GA, Dias-Melicio LA, Bordon-Graciani AP et al (2010) Paracoccidioides brasiliensis uses endogenous and exogenous arachidonic acid for PGE x production. Mycopathologia 170:123–130. doi:10.1007/s11046-010-9301-x

    Article  PubMed  CAS  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063. doi:10.1111/j.1742-4658.2011.08027.x

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Scott JB, Bhaheetharan J et al (2009) Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894

    Article  PubMed  CAS  Google Scholar 

  • Burow GB, Nesbitt TC, Dunlap J, Keller NP (1997) Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant Microbe Interact 10:380–387. doi:10.1094/MPMI.1997.10.3.380

    Article  CAS  Google Scholar 

  • Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673

    PubMed  CAS  Google Scholar 

  • Castro M, Ralston NV, Morgenthaler TI et al (1994) Candida albicans stimulates arachidonic acid liberation from alveolar macrophages through alpha-mannan and beta-glucan cell wall components. Infect Immun 62:3138–3145

    PubMed  CAS  Google Scholar 

  • Castro M, Bjoraker JA, Rohrbach MS, Limper AH (1996) Candida albicans induces the release of inflammatory mediators from human peripheral blood monocytes. Inflammation 20:107–122

    Article  PubMed  CAS  Google Scholar 

  • Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol 133:1383–1387. doi:10.1099/00221287-133-5-1383

    PubMed  CAS  Google Scholar 

  • Chen H, Fujita M, Feng Q et al (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 101:5048–5052. doi:10.1073/pnas.0401416101

    Article  PubMed  CAS  Google Scholar 

  • Dagenais TRT, Chung D, Giles SS et al (2008) Defects in conidiophore development and conidium-macrophage interactions in a dioxygenase mutant of Aspergillus fumigatus. Infect Immun 76:3214–3220. doi:10.1128/IAI.00009-08

    Article  PubMed  CAS  Google Scholar 

  • Deva R, Shankaranarayanan P, Ciccoli R, Nigam S (2003) Candida albicans induces selectively transcriptional activation of cyclooxygenase-2 in HeLa cells: pivotal roles of Toll-like receptors, p38 mitogen-activated protein kinase, and NF-kappa B. J Immunol 171:3047–3055

    PubMed  CAS  Google Scholar 

  • Erb-Downward JR, Noggle RM, Williamson PR, Huffnagle GB (2008) The role of laccase in prostaglandin production by Cryptococcus neoformans. Mol Microbiol 68:1428–1437. doi:10.1111/j.1365-2958.2008.06245.x

    Article  PubMed  CAS  Google Scholar 

  • Filler SG, Pfunder AS, Spellberg BJ et al (1996) Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells. Infect Immun 64:2609–2617

    PubMed  CAS  Google Scholar 

  • Garscha U, Oliw EH (2009) Leucine/valine residues direct oxygenation of linoleic acid by (10R)- and (8R)-dioxygenases: expression and site-directed mutagenesis oF (10R)-dioxygenase with epoxyalcohol synthase activity. J Biol Chem 284:13755–13765. doi:10.1074/jbc.M808665200

    Article  PubMed  CAS  Google Scholar 

  • Garscha U, Jernerén F, Chung D et al (2007) Identification of dioxygenases required for Aspergillus development. J Biol Chem 282:34707–34718. doi:10.1074/jbc.M705366200

    Article  PubMed  CAS  Google Scholar 

  • Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA (2010) Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol 76:3989–3998. doi:10.1128/AEM.00052-10

    Article  PubMed  CAS  Google Scholar 

  • Georgianna DR, Fedorova ND, Burroughs JL, Dolezal AL, Bok JW, Horowitz-Brown S, Woloshuk CP, Yu J, Keller NP, Payne GA (2010) Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters. Mol Plant Pathol 11:213–226

    Article  PubMed  CAS  Google Scholar 

  • Herrero-Garcia E, Garzia A, Cordobés S et al (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400. doi:10.1016/j.funbio.2011.02.005

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann I, Jernerén F, Garscha U, Oliw EH (2011) Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain. A comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase. Arch Biochem Biophys 506:216–222. doi:10.1016/j.abb.2010.11.022

    Article  PubMed  CAS  Google Scholar 

  • Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685. doi:10.1128/AEM.00565-08

    Article  PubMed  CAS  Google Scholar 

  • Kundu G, Noverr MC (2011) Exposure to host or fungal PGE2 abrogates protection following immunization with Candida-pulsed dendritic cells. Med Mycol 49:380–394. doi:10.3109/13693786.2010.532514

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Rhodes JC (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51:218–223

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Polacheck I, Popkin TJ (1982) Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 150:1414–1421

    PubMed  CAS  Google Scholar 

  • Lee H-S, Lee C-S, Yang C-J et al (2009) Candida albicans induces cyclo-oxygenase 2 expression and prostaglandin E2 production in synovial fibroblasts through an extracellular-regulated kinase 1/2 dependent pathway. Arthritis Res Ther 11:R48. doi:10.1186/ar2661

    Article  PubMed  Google Scholar 

  • Mezger M, Kneitz S, Wozniok I et al (2008) Proinflammatory response of immature human dendritic cells is mediated by dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis 197:924–931. doi:10.1086/528694

    Article  PubMed  CAS  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813. doi:10.1128/AEM.02765-05

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210. doi:10.1128/IAI.72.11.6206-6210.2004

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Phare SM, Toews GB et al (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963. doi:10.1128/IAI.69.5.2957-2963.2001

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Toews GB, Huffnagle GB (2002) Production of prostaglandins and leukotrienes by pathogenic fungi. Infect Immun 70:400–402

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Cox GM, Perfect JR, Huffnagle GB (2003) Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 71:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Obinata H, Izumi T (2009) G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 89:66–72. doi:16/j.prostaglandins.2008.11.002

    Article  PubMed  CAS  Google Scholar 

  • Obinata H, Hattori T, Nakane S et al (2005) Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J Biol Chem 280:40676–40683. doi:10.1074/jbc.M507787200

    Article  PubMed  CAS  Google Scholar 

  • Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000. doi:10.1161/ATVBAHA.110.207449

    Article  PubMed  CAS  Google Scholar 

  • Salas SD, Bennett JE, Kwon-Chung KJ et al (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386

    Article  PubMed  CAS  Google Scholar 

  • Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267. doi:10.1128/MMBR.00045-10

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Del Poeta M (2011) Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185. doi:10.1111/j.1462-5822.2010.01550.x

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Gupta S, Dastidar S, Ray A (2010) Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85:336–349. doi:10.1159/000312669

    Article  PubMed  CAS  Google Scholar 

  • Schmeekens SP, van de Veerdonk FL, van der Meer JWM et al (2010) The Candida Th17 response is dependent on mannan- and beta-glucan-induced prostaglandin E2. Int Immunol 22:889–895. doi:10.1093/intimm/dxq442

    Article  PubMed  CAS  Google Scholar 

  • Suram S, Brown GD, Ghosh M et al (2006) Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 281:5506–5514. doi:10.1074/jbc.M509824200

    Article  PubMed  CAS  Google Scholar 

  • Suram S, Gangelhoff TA, Taylor PR et al (2010) Pathways regulating cytosolic phospholipase A2 activation and eicosanoid production in macrophages by Candida albicans. J Biol Chem 285:30676–30685. doi:10.1074/jbc.M110.143800

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118. doi:10.1016/j.tim.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2004a) Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot Cell 3:1398

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004b) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005a) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Bok J-W, Andes D et al (2005b) Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559. doi:10.1128/IAI.73.8.4548-4559.2005

    Article  PubMed  CAS  Google Scholar 

  • Xue C, Hsueh Y, Heitman J (2008) Magnificent seven: roles of G protein‐coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032. doi:10.1111/j.1574-6976.2008.00131.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy P. Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Affeldt, K.J., Keller, N.P. (2012). Oxylipins in Fungal-Mammalian Interactions. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_19

Download citation

Publish with us

Policies and ethics