Skip to main content

The Effects of Plant Breeding on Soil Microbes

  • Chapter
  • First Online:
Soil Microbiology and Sustainable Crop Production

Abstract

Breeding wheat in the twentieth century, for example has been successful on many accounts, resulting in increased yields and grain quality (and contributing to the “Green Revolution”). One of the consequences of breeding for increased yield and partitioning of biomass into grain (raised harvest index, i.e. the grain-to-straw biomass ratio) has however been a decrease in the root-to-shoot biomass ratio (Rengel 2005). This had significant implications for crop nutrition, since the smaller root system can only support the relatively larger shoots when provided with large quantities of inorganic fertilizers. What remains unclear, and needs to be one of priorities for future research, is whether altered root-to-shoot ratios influence root exudation and therefore the structure of microbial communities in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon-Gutierrez E, Couchaud B, Augur C, Calvert V, Criquet S (2008) Effects of nitrogen ­availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.). Soil Biol Biochem 40:1654–1661

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Drought stress and VA mycorrhizal fungi effects on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Crop Res 13:245–257

    Google Scholar 

  • Amoralazcano E, Vazquez MM, Azcon R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65–70

    Article  CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RC, Bethlenfalvay GJ (1997) Bacteria from the rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Azaizeh HA, Marschner H, Roemheld V, Wittenmayer L (1995) Effects of a vesicular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327

    Article  Google Scholar 

  • Azaizeh HA, Neumann G, Marschner H (1996) Effects of thiamine and nitrogen fertilizer form on the number of N2-fixing and total bacteria in the rhizosphere of maize plants. Z Pflanz Bodenkunde 159:1–6

    Article  Google Scholar 

  • Bakken LR (1985) Separation and purification of bacteria from soil. Appl Environ Microbiol 49:1482–1487

    PubMed  CAS  Google Scholar 

  • Banik S, Dey BK (1983) Phosphate-solubilizing potentiality of the microorganisms capable of utilizing al phosphate as a sole phosphorus source. Zentralbl Mikrobiol 138:17–23

    PubMed  CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Google Scholar 

  • Bokmeyer JM, Bonos SA, Meyer WA (2009) Broad-sense heritability and stability analysis of brown patch resistance in tall fescue. Hort Sci 44:289–292

    Google Scholar 

  • Bolland MDA, Siddique KHM, Loss SP, Baker MJ (1999) Comparing responses of grain legumes, wheat and canola to applications of superphosphate. Nutr Cycl Agroecosys 53:157–175

    Article  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Buwalda JG, Goh KM (1982) Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106

    Article  CAS  Google Scholar 

  • Cooper KM, Grandison GS (1986) Interaction of vesicular-arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapta. Ann Appl Biol 108:555–565

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat L.).II. Aluminum- stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Dixon RK, Garrett HE, Cox GS (1989) Boron fertilization, vesicular-arbuscular mycorrhizal colonization and growth of Citrus jambhiri Lush. J Plant Nutr 12:687–700

    Article  CAS  Google Scholar 

  • Dobereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Article  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51

    Article  Google Scholar 

  • Fiorito TM, Icoz I, Stotzky G (2008) Adsorption and binding of the transgenic plant proteins, human serum albumin, beta-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: microbial utilization and enzymatic activity of free and clay-bound proteins. Appl Clay Sci 39:142–150

    Article  CAS  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082

    Article  CAS  Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Article  Google Scholar 

  • Garcia de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1997) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    Article  CAS  Google Scholar 

  • George TS, Simpson RJ, Gregory PJ, Richardson AE (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803

    Article  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2006) Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol Biochem 38:2255–2264

    Article  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease of root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552

    Article  PubMed  CAS  Google Scholar 

  • Greenwood DJ, Stellacci AM, Meacham MC, Broadley MR, White PJ (2005) Phosphorus response components in different Brassica oleracea genotypes are reproducible in different environments. Crop Sci 45:1728–1735

    Article  CAS  Google Scholar 

  • Griffiths BS, Welschen R, Van Arendonk JJCM, Lambers H (1992) The effect of nitrate-nitrogen supply on bacteria and bacterial feeding fauna in the rhizosphere of different grass species. Oecologia 91:253–259

    Article  Google Scholar 

  • Hardarson G, Atkins C (2003) Optimizing biological N2 fixation by legumes in farming systems. Plant Soil 252:41–54

    Article  CAS  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000a) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate of inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000b) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    Article  CAS  Google Scholar 

  • Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65:1045–1049

    PubMed  CAS  Google Scholar 

  • Horst WJ, Kahm M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    Article  CAS  Google Scholar 

  • Hoyle FC, Murphy DV, Brookes PC (2008) Microbial response to the addition of glucose in low-fertility soils. Biol Fertil Soils 44:571–579

    Article  CAS  Google Scholar 

  • Icoz I, Stotzky G (2008a) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgen Res 17:609–620

    Article  CAS  Google Scholar 

  • Icoz I, Stotzky G (2008b) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity, or composition of the soil microbial biomass – a new perspective. Soil Biol Biochem 40:61–73

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Matthiessen JN (1999) Biofumigation research - beyond empiricism. In: Magarey RC (ed) Proceedings of 1st Australian soil-borne disease symposium. Watson Ferguson, Brisbane, Australia

    Google Scholar 

  • Kirkegaard JA, Sarwar M (1998a) Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:71–89

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Sarwar M (1998b) Biofumigation potential of brassicas. II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201:91–101

    Article  Google Scholar 

  • Kirkegaard JA, Matthiessen JN, Wong PTW, Mead A, Sarwar M, Smith BJ (1999) Exploiting the biofumigation potential of brassicas in farming systems. In: Proceedings of 10th international rapeseed congress, Canberra, Australia

    Google Scholar 

  • Kirkegaard JA, Sarwar M, Wong PTW, Mead A, Howe G, Newell M (2001a) Field studies on the biofumigation of take-all by Brassica break crops. Aust J Agric Res 51:445–456

    Article  Google Scholar 

  • Kirkegaard JA, Smith BJ, Morra MJ (2001b) Biofumigation: soil-borne pest and disease suppression by Brassica roots. In: Proceedings of the 6th symposium of the international society of root research, Nagoya, Japan, pp 416–417

    Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, De la Vega OM, Guevara-Garcia A, Herrera-Estrella L (2000) Enhanced ­phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotech 18:450–453

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microb Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Lu Y, Zhang Z, Ren L, Liu B, Liao Y, Xu H, Du L, Ma H, Ren Z, Jing J, Xin Z (2009) Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin 35:640–646

    Article  CAS  Google Scholar 

  • Lynch JM, Brown KM (2001) Top soil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 251:279–289

    Article  CAS  Google Scholar 

  • Marschner P, Timonen S (2004) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • Marschner P, Ascher JS, Graham RD (1991) Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeumannomyces graminis var. tritici and on manganese uptake by wheat (Triticum aestivum L.). Biol Fertil Soils 12:33–38

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11–20

    Article  CAS  Google Scholar 

  • Marschner P, Gerendas J, Sattelmacher B (1999) Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant Soil 215:135–141

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Marschner P, Fu QL, Rengel Z (2003) Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J Plant Nutr Soil Sci 166:712–718

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman MZ, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman MZ, Rengel Z (2007) Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biol Biochem 39:87–98

    Article  CAS  Google Scholar 

  • McCully ME, Miller C, Sprague SJ, Huang CX, Kirkegaard JA (2008) Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytol 180:193–205

    Article  PubMed  CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Motisi N, Montfort F, Dore T, Romillac N, Lucas P (2009) Duration of control of two soilborne pathogens following incorporation of above- and below-ground residues of Brassica juncea into soil. Plant Pathol 58:470–478

    Article  Google Scholar 

  • Nagendran S, Hammerschmidt R, McGrath JM (2009) Identification of sugar beet germplasm EL51 as a source of resistance to post-emergence Rhizoctonia damping-off. Eur J Plant Pathol 123:461–471

    Article  Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Buehler S, Frossard E (2001) Phosphorus transformations in an oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant Soil 237:197–201

    Article  CAS  Google Scholar 

  • Osborne L, Rengel Z (2002a) Genotypic differences in wheat for uptake and utilisation of P from iron phosphate. Aust J Agric Res 53:837–844

    Article  CAS  Google Scholar 

  • Osborne L, Rengel Z (2002b) Growth and P uptake by wheat genotypes supplied with phytate as only P source. Aust J Agric Res 53:845–850

    Article  CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an Al-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Po C, Cumming JR (1997) Mycorrhizal fungi alter the organic acid exudation profile of red clover rhizospheres. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and ­perspectives on the function of plant roots. Am Soc Plant Physiol, pp 517–519

    Google Scholar 

  • Posta K, Marschner H, Roemheld V (1994) Manganese reduction in the rhizosphere of ­mycorrhizal and non- mycorrhizal maize. Mycorrhiza 5:119–124

    Article  CAS  Google Scholar 

  • Potter MJ, Vanstone VA, Davies KA, Rathjen AJ (2000) Breeding to increase the concentration of 2-phenylethyl-glucosinolate in the roots of Brassica napus. J Chem Ecol 26:1811–1820

    Article  CAS  Google Scholar 

  • Rengel Z (2000) Uptake and transport of manganese in plants. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 57–87

    Google Scholar 

  • Rengel Z (2001a) Genotypic differences in micronutrient use efficiency in crops. Comm Soil Sci Plant Anal 32:1163–1186

    Article  CAS  Google Scholar 

  • Rengel Z (2001b) The role of micronutrient fertilization in managing soil-borne plant diseases. In: Singh K, Mori S, Welch RM (eds) Perspectives on the micronutrient nutrition of crops. Scientific Publishers, Jodhpur, India, pp 53–69

    Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162

    Article  CAS  Google Scholar 

  • Rengel Z (2005) Breeding crops for adaptation to environments with low nutrient availability. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 239–276

    Google Scholar 

  • Rengel Z, Graham RD, Pedler JF (1994) Time-course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Ann Bot 74:471–477

    Article  CAS  Google Scholar 

  • Rengel Z, Ross G, Hirsch P (1998) Plant genotype and micronutrient status influence colonization of wheat roots by soil bacteria. J Plant Nutr 21:99–113

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilisation of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhance by the presence of soil micro-organisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Rumberger A, Marschner P (2003) 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol Biochem 35:445–452

    Article  CAS  Google Scholar 

  • Rumberger A, Marschner P (2004) 2-Phenylethylisothiocyanate concentration and bacterial community composition in the rhizosphere of field-grown canola. Funct Plant Biol 31:623–631

    Article  CAS  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turra D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    Article  PubMed  CAS  Google Scholar 

  • Sadana US, Kusum L, Claassen N (2002) Manganese efficiency of wheat cultivars as related to root growth and internal manganese requirement. J Plant Nutr 25:2677–2688

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microb Ecol 33:35–39

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2002) Bt toxin is not taken up from soil or hydroponic culture by corn, carrot, radish, or turnip. Plant Soil 239:165–172

    Article  CAS  Google Scholar 

  • Scott JS, Knudsen GR (1999) Soil amendment effects of rape (Brassica napus) residues on pea rhizosphere bacteria. Soil Biol Biochem 31:1435–1441

    Article  CAS  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Article  Google Scholar 

  • Seeling B, Zasoski RJ (1993) Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil 148:277–284

    Article  CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicual- arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    PubMed  CAS  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Am J 60:1815–1821

    Article  CAS  Google Scholar 

  • Smith B, Kirkegaard JA, Howe GN (2004) Impacts of Brassica break-crops on soil biology and yield of the following wheat crop. Aust J Agric Res 55:1–11

    Google Scholar 

  • Soederberg KH, Baath E (2004) The influence of nitrogen fertilisation on bacterial activity in the rhizosphere of barley. Soil Biol Biochem 36:195–198

    Article  Google Scholar 

  • Stotzky G (2005) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89

    Article  Google Scholar 

  • Vleesschauwer DD, Chernin L, Hofte MM (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9:10–15

    Article  Google Scholar 

  • Wamberg C, Christensen S, Jacobsen I, Mueller AK, Sorensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (1998) Response of spring wheat cultivars to Glomus clarum NT4 in a P-deficient soil containing arbuscular mycorrhizal fungi. Can J Soil Sci 78:481–484

    Article  Google Scholar 

  • Zhang CQ, Liu YH, Ma XY, Feng Z, Ma ZH (2009) Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid. Crop Protect 28:381–386

    Article  Google Scholar 

  • Zhu YG, Smith SE, Baritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Marschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Marschner, P., Rengel, Z. (2010). The Effects of Plant Breeding on Soil Microbes. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_8

Download citation

Publish with us

Policies and ethics