Skip to main content
Log in

Rhizosphere Properties of Poaceae Genotypes Under P-limiting Conditions

  • Rhizosphere - Perspectives and Challenges - A Tribute to Lorenz Hiltner
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant genotypes differ in P efficiency, i.e. their capacity to grow in soil with low P availability. Plant properties such as root and root hair length, release of P mineralising and mobilising compounds by the roots and P requirement for optimal growth are known to influence P efficiency. In order to improve the understanding of the role of rhizosphere properties in plant P uptake, we grew three Poaceae genotypes [two wheat (Triticum aestivum L.) genotypes (the P-efficient Goldmark and the P-inefficient Janz), and the Australian native grass Austrostipa densiflora L.] to maturity in an acidic loamy sand with low P availability. Addition of 120 mg P as FePO4 kg−1 (P120) improved the growth of all three genotypes. In both P0 and P120, growth and P uptake were smaller in Janz than in Goldmark. During the vegetative phase, growth and P uptake of Austrostipa were smaller than in Goldmark in P0 but greater in P120. These differences can be explained by plant properties such as root growth, specific P uptake, mobilisation of inorganic and organic P by root exudates and P utilisation efficiency. In P120, P availability in the rhizosphere was least in Janz and greatest in Austrostipa. Microbial biomass P in the rhizosphere was least in Janz. Acid phosphatase activity was greatest in the rhizosphere of Austrostipa and least in Janz. Plant growth and P uptake were positively correlated with microbial P, acid phosphatase activity and resin P in the rhizosphere, suggesting that microorganisms contribute to uptake of P by plants in this soil. Microbial community composition in the rhizosphere [analysed by fatty acid methylester (FAME) analysis and denaturing gradient gel electrophoresis (DGGE)] differed among genotypes, changed during plant development and was affected by P addition to the soil. Genotype-specific microbial community composition in the rhizosphere may have contributed to the observed differential capacity of plants to grow at low P availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K Alef P Nannipieri C Trazar-Cepeda (1995) Phosphatase activity K Alef P Nannipieri (Eds) Methods in Applied Soil Microbiology and Biochemistry Academic Press London 335–339

    Google Scholar 

  • S Avrahami W Liesack R Conrad (2003) ArticleTitleEffects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers Environ. Microbiol. 5 691–705 Occurrence Handle12871236 Occurrence Handle1:CAS:528:DC%2BD3sXntFyqtr0%3D Occurrence Handle10.1046/j.1462-2920.2003.00457.x

    Article  PubMed  CAS  Google Scholar 

  • S Banik B K Dey (1983a) ArticleTitleAlluvial soil microorganisms capable of utilizing insoluble Al phosphate as a sole source of phosphorus Zentralbl. Mikrobiol. 138 437–442 Occurrence Handle1:CAS:528:DyaL2cXktVelt7g%3D

    CAS  Google Scholar 

  • S Banik B K Dey (1983b) ArticleTitlePhosphate-solubilizing potentiality of the microorganisms capable of utilizing Al phosphate as a sole phosphorus source Zentralbl. Mikrobiol. 138 17–23 Occurrence Handle1:CAS:528:DyaL2cXitVKhu70%3D

    CAS  Google Scholar 

  • S A Barber (1995) Soil Nutrient Bioavailability. A Mechanistic Approach EditionNumber2 John Wiley & Sons New York, USA

    Google Scholar 

  • E Baudoin E Benizri A Guckert (2003) ArticleTitleImpact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere Soil Biol. Biochem. 35 1183–1192 Occurrence Handle1:CAS:528:DC%2BD3sXlvVCmtLY%3D Occurrence Handle10.1016/S0038-0717(03)00179-2

    Article  CAS  Google Scholar 

  • J S Buyer D P Roberts E Russek-Cohen (1999) ArticleTitleMicrobial community structure and function in the spermosphere as affected by soil and seed type Can. J. Microbiol. 45 138–144 Occurrence Handle1:CAS:528:DyaK1MXjvValtL0%3D Occurrence Handle10.1139/cjm-45-2-138

    Article  CAS  Google Scholar 

  • J R Caradus (1981) ArticleTitleEffect of root hair length on white clover growth over a range of soil P levels N Z J. Agric. Res. 24 353–358

    Google Scholar 

  • M Carelli S Gnocchi S Fancelli A Mengoni D Paffetti C Scotti M Bazzicalupo (2000) ArticleTitleGenetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils Appl. Environ. Microbiol. 66 4785–4789 Occurrence Handle11055924 Occurrence Handle1:CAS:528:DC%2BD3cXnvFyrtL4%3D Occurrence Handle10.1128/AEM.66.11.4785-4789.2000

    Article  PubMed  CAS  Google Scholar 

  • K E Dunfield J J Germida (2003) ArticleTitleSeasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus) Appl. Environ. Microbiol. 69 7310–7318 Occurrence Handle14660380 Occurrence Handle1:CAS:528:DC%2BD3sXpvFClsL4%3D Occurrence Handle10.1128/AEM.69.12.7310-7318.2003

    Article  PubMed  CAS  Google Scholar 

  • T W Federle (1986) Microbial distribution in soil – new techniques F Megusar M Gantar (Eds) Perspectives in Microbial Ecology Sloveniane Society for Microbiology Ljubljana 493–498

    Google Scholar 

  • D Föhse N Claassen A Jungk (1988) ArticleTitlePhosphorus efficiency in plants. I. External and internal P requirement and P uptake efficiency of different plant species Plant Soil 110 101–109 Occurrence Handle10.1007/BF02143545

    Article  Google Scholar 

  • A Frostegård E Bååth A Tunlid (1993) ArticleTitleShifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis Soil Biol. Biochem. 25 723–730 Occurrence Handle10.1016/0038-0717(93)90113-P

    Article  Google Scholar 

  • J Gerke U Meyer (1995) ArticleTitlePhosphate acquisition by red clover and black mustard on a humic podsol J. Plant Nutrit. 18 2409–2429 Occurrence Handle1:CAS:528:DyaK2MXps1yrtbY%3D Occurrence Handle10.1080/01904169509365074

    Article  CAS  Google Scholar 

  • M Giovannetti B Mosse (1980) ArticleTitleAn evaluation of techniques for measuring vesicular-arbuscular mycorrhizal colonization in roots New Phytol. 84 489–500 Occurrence Handle10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • N C M Gomes O Fagbola R Costa N G Rumjanek A Buchner L Mendona-Hagler K Smalla (2003) ArticleTitleDynamics of fungal communities in bulk and maize rhizosphere soil in the Tropics Appl. Environ. Microbiol. 69 3758–3766 Occurrence Handle12839741 Occurrence Handle1:CAS:528:DC%2BD3sXlsFagsbk%3D Occurrence Handle10.1128/AEM.69.7.3758-3766.2003

    Article  PubMed  CAS  Google Scholar 

  • P Imas B Bar-Yossef U Kafkafi R Ganmore-Neumann (1997) ArticleTitlePhosphate induced carboxylate and proton release by tomato roots Plant Soil 191 35–39 Occurrence Handle1:CAS:528:DyaK2sXltVKjsbk%3D Occurrence Handle10.1023/A:1004262730434

    Article  CAS  Google Scholar 

  • C M Johnson A Ulrich (1959) ArticleTitleAnalytical methods for use in plant analysis Calif. Agric. Expt. Sta. Bull. 767 25–78

    Google Scholar 

  • R H Jongman C J F ter Braak O F R Tongeren ParticleVan (Eds) (1995) Data Analysis in Community and Landscape Ecology Cambridge University Press Cambridge, UK

    Google Scholar 

  • A Jungk N Claassen (1986) ArticleTitleAvailability of phosphate and potassium as the result of interactions between root and soil in the rhizosphere Zt. Pflanzenernaehr. Bodenkde. 149 411–427 Occurrence Handle1:CAS:528:DyaL28XltlaktbY%3D

    CAS  Google Scholar 

  • E Kandeler P Marschner D Tscherko T S Gahoonia N E Nielsen (2001) ArticleTitleMicrobial community composition and functional diversity in the rhizosphere of maize Plant Soil 238 301–312 Occurrence Handle10.1023/A:1014479220689

    Article  Google Scholar 

  • K Kuono Y Tuchiya T Ando (1995) ArticleTitleMeasurement of soil microbial biomass phosphorus by an anion exchange membrane method Soil Biol. Biochem. 27 1353–1357 Occurrence Handle10.1016/0038-0717(95)00057-L

    Article  Google Scholar 

  • W Liesack H Weyland E Stackebrandt (1991) ArticleTitlePotential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria Microb. Ecol. 21 191–198 Occurrence Handle1:CAS:528:DyaK3MXmsV2msLs%3D

    CAS  Google Scholar 

  • J Lottmann H Heuer K Smalla G Berg (1999) ArticleTitleInfluence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria FEMS Microb. Ecol. 29 365–377 Occurrence Handle1:CAS:528:DyaK1MXls1amsbk%3D Occurrence Handle10.1111/j.1574-6941.1999.tb00627.x

    Article  CAS  Google Scholar 

  • J Marilley M Aragno (1999) ArticleTitlePhylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots Appl. Soil Ecol. 13 127–136 Occurrence Handle10.1016/S0929-1393(99)00028-1

    Article  Google Scholar 

  • H Marschner (1995) Mineral Nutrition of Higher Plants Academic Press London

    Google Scholar 

  • P Marschner K Baumann (2003) ArticleTitleChanges in bacterial community structure induced by mycorrhizal colonisation in split-root maize Plant Soil 251 279–289 Occurrence Handle1:CAS:528:DC%2BD3sXis1Citrs%3D Occurrence Handle10.1023/A:1023034825871

    Article  CAS  Google Scholar 

  • P Marschner D E Crowley R M Higashi (1997) ArticleTitleRoot exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.) Plant Soil 189 11–20 Occurrence Handle1:CAS:528:DyaK2sXktVKisbk%3D Occurrence Handle10.1023/A:1004266907442

    Article  CAS  Google Scholar 

  • P Marschner D E Crowley R Lieberei (2001) ArticleTitleArbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize Mycorrhiza 11 297–302 Occurrence Handle1:CAS:528:DC%2BD38Xhtlamtbw%3D Occurrence Handle10.1007/s00572-001-0136-7

    Article  CAS  Google Scholar 

  • P Marschner P F Grierson Z Rengel (2005) ArticleTitleMicrobial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia Appl. Soil Ecol. 28 191–201 Occurrence Handle10.1016/j.apsoil.2004.09.001

    Article  Google Scholar 

  • P Marschner E Kandeler B Marschner (2003) ArticleTitleStructure and function of the soil microbial community in a long-term fertilizer experiment Soil Biol. Biochem. 35 453–461 Occurrence Handle1:CAS:528:DC%2BD3sXhvFGrt7w%3D Occurrence Handle10.1016/S0038-0717(02)00297-3

    Article  CAS  Google Scholar 

  • P Marschner G Neumann A Kania L Weisskopf R Lieberei (2002) ArticleTitleSpatial and temporal dynamics of bacterial community composition in the rhizosphere of cluster roots of white lupin (Lupinus albus L.) Plant Soil 246 167–174 Occurrence Handle1:CAS:528:DC%2BD38XnvFKhtbo%3D Occurrence Handle10.1023/A:1020663909890

    Article  CAS  Google Scholar 

  • P Marschner S Timonen (2004) ArticleTitleInteractions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere Appl. Soil Ecol. 28 23–36 Occurrence Handle10.1016/j.apsoil.2004.06.007

    Article  Google Scholar 

  • M J McLaughlin A M Alston J K Martin (1986) ArticleTitleMeasurement of phosphorus in the soil microbial biomass: a modified procedure for field soils Soil Biol. Biochem. 18 437–443 Occurrence Handle1:CAS:528:DyaL28XlvV2qtLg%3D Occurrence Handle10.1016/0038-0717(86)90050-7

    Article  CAS  Google Scholar 

  • R Miethling K Ahrends C C Tebbe (2003) ArticleTitleStructural differences in the rhizosphere communities of legumes are not equally reflected in community-level physiological profiles Soil Biol. Biochem. 35 1405–1410 Occurrence Handle1:CAS:528:DC%2BD3sXntVGnurw%3D Occurrence Handle10.1016/S0038-0717(03)00221-9

    Article  CAS  Google Scholar 

  • J Murphy J P Riley (1962) ArticleTitleA modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 27 31–36 Occurrence Handle1:CAS:528:DyaF38XksVyntr8%3D Occurrence Handle10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • G Muyzer E C Waal ParticleDe A G Uitterlinden (1993) ArticleTitleProfiling of complex microbial populations by denaturing gradient gel electrohphoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Appl. Environ. Microbiol. 59 695–700 Occurrence Handle7683183 Occurrence Handle1:CAS:528:DyaK3sXit1Kktrk%3D

    PubMed  CAS  Google Scholar 

  • P Nannipieri E Kandeler P Rugiero (2002) Enzyme activities and microbiological and biochemical processes in soil R G Burns R Dick (Eds) Enzymes in the Environment: Activity, Ecology and Applications Marcel Dekker New York 1–34

    Google Scholar 

  • A Oberson D K Friesen I M Rao S Buehler E Frossard (2001) ArticleTitlePhosphorus transformations in an oxisol under contrasting land-use systems: the role of the soil microbial biomass Plant Soil 237 197–201 Occurrence Handle1:CAS:528:DC%2BD38XovVWltg%3D%3D Occurrence Handle10.1023/A:1013301716913

    Article  CAS  Google Scholar 

  • T Ohno L M Zibilske (1991) ArticleTitleDetermination of low concentrations of phosphorus in soil extracts using malachite green Soil Sci. Soc. Am. J. 55 892–895 Occurrence Handle1:CAS:528:DyaK3MXltlCqsb4%3D Occurrence Handle10.2136/sssaj1991.03615995005500030046x

    Article  CAS  Google Scholar 

  • L Osborne Z Rengel (2002a) ArticleTitleGenotypic differences in wheat for uptake and utilisation of P from iron phosphate Aust. J. Agric. Res. 53 837–844 Occurrence Handle1:CAS:528:DC%2BD38Xmt1GmtLg%3D Occurrence Handle10.1071/AR01101

    Article  CAS  Google Scholar 

  • L Osborne Z Rengel (2002b) ArticleTitleGrowth and P uptake by wheat genotypes supplied with phytate as only P source Aust. J. Agric. Res. 53 845–850 Occurrence Handle1:CAS:528:DC%2BD38Xmt1GmtLk%3D Occurrence Handle10.1071/AR01102

    Article  CAS  Google Scholar 

  • C E Pankhurst S Yu B G Hawke B D Harch (2001) ArticleTitleCapacity of fatty acid profiles and substrate utilisation patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations win South Australia Biol. Fertil. Soils 33 204–217 Occurrence Handle1:CAS:528:DC%2BD3MXhsFOgur8%3D Occurrence Handle10.1007/s003740000309

    Article  CAS  Google Scholar 

  • J M Phillips D S Hayman (1970) ArticleTitleImproved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection Trans. Brit. Mycol. Soc. 55 158–161 Occurrence Handle10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  • Z Rengel (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes Z Rengel (Eds) Mineral Nutrition of Crops: Fundamental Mechanisms and Implications Food Products Press New York 227–265

    Google Scholar 

  • A E Richardson (2001) ArticleTitleProspects for using soil microorganisms to improve the acquisition of phosphorus by plants Austr. J. Plant Physiol. 28 897–906

    Google Scholar 

  • A E Richardson P A Hadobas (1997) ArticleTitleSoil isolates of Pseudomonas spp. that utilize inositol phosphates Can. J. Microbiol. 43 509–516 Occurrence Handle9226870 Occurrence Handle1:CAS:528:DyaK2sXjslGlt70%3D Occurrence Handle10.1139/m97-073

    Article  PubMed  CAS  Google Scholar 

  • J W Rouatt H Katznelson (1961) ArticleTitleA study of the bacteria on the root surface and in the rhizosphere soil of crop plants J. Appl. Bacteriol. 24 164–171

    Google Scholar 

  • D P Schachtman R J Reid S M Ayling (1998) ArticleTitlePhosphorus uptake by plants: from soil to cell Plant Physiol. 116 447–453 Occurrence Handle9490752 Occurrence Handle1:CAS:528:DyaK1cXht1ajtbc%3D Occurrence Handle10.1104/pp.116.2.447

    Article  PubMed  CAS  Google Scholar 

  • J Secilia D J Bagyaraj (1987) ArticleTitleBacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas Can. J. Microbiol. 33 1069–1073 Occurrence Handle10.1139/m87-187

    Article  Google Scholar 

  • B Seeling R J Zasoski (1993) ArticleTitleMicrobial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil Plant Soil 148 277–284 Occurrence Handle1:CAS:528:DyaK3sXktVOrtbw%3D Occurrence Handle10.1007/BF00012865

    Article  CAS  Google Scholar 

  • K Smalla G Wieland A Buchner A Zock J Parzy S Kaiser N Roskot H Heuer G Berg (2001) ArticleTitleBulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed Appl. Environ. Microbiol. 67 4742–4751 Occurrence Handle11571180 Occurrence Handle1:CAS:528:DC%2BD3MXns1Wit74%3D Occurrence Handle10.1128/AEM.67.10.4742-4751.2001

    Article  PubMed  CAS  Google Scholar 

  • S E Smith D J Read (1997) Mycorrhizal Symbiosis EditionNumber2 Academic Press London

    Google Scholar 

  • K H Soederberg P A Olsson E Bååth (2002) ArticleTitleStructure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation FEMS Microbiol. Ecol. 40 223–231

    Google Scholar 

  • J C Tarafdar N Claassen (1988) ArticleTitleOrganic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms Biol. Fertil. Soils 5 308–312 Occurrence Handle1:CAS:528:DyaL1cXitVersLc%3D Occurrence Handle10.1007/BF00262137

    Article  CAS  Google Scholar 

  • M Tesfaye N S Dufault M R Dornbusch D L Allan C P Vance D A Samac (2003) ArticleTitleInfluence of enhance malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability Soil Biol. Biochem. 35 1103–1113 Occurrence Handle1:CAS:528:DC%2BD3sXls1ekurw%3D Occurrence Handle10.1016/S0038-0717(03)00162-7

    Article  CAS  Google Scholar 

  • P Wechter J Williamson A Robertson D Kluepfel (2003) ArticleTitleA rapid, cost-effective procedure for the extraction of microbial DNA from soil World J. Microbiol. Biotechnol. 19 85–91 Occurrence Handle1:CAS:528:DC%2BD3sXhsFKku7o%3D Occurrence Handle10.1023/A:1022587806945

    Article  CAS  Google Scholar 

  • M A Whitelaw T J Harden K R Helyar (1999) ArticleTitlePhosphate solubilization in solution culture by the soil fungus Penicillium radicum Soil Biol. Biochem. 31 655–665 Occurrence Handle1:CAS:528:DyaK1MXjs1Cisbc%3D Occurrence Handle10.1016/S0038-0717(98)00130-8

    Article  CAS  Google Scholar 

  • J C Zak M R Willig D L Moorhead H G Wildman (1994) ArticleTitleFunctional diversity of microbial communities: a quantitative approach Soil Biol. Biochem. 26 1101–1108 Occurrence Handle10.1016/0038-0717(94)90131-7

    Article  Google Scholar 

  • Y G Zhu S E Smith A R Baritt F A Smith (2001) ArticleTitlePhosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars Plant Soil 237 249–255 Occurrence Handle1:CAS:528:DC%2BD38XovVWlug%3D%3D Occurrence Handle10.1023/A:1013343811110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschner, P., Solaiman, Z. & Rengel, Z. Rhizosphere Properties of Poaceae Genotypes Under P-limiting Conditions. Plant Soil 283, 11–24 (2006). https://doi.org/10.1007/s11104-005-8295-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-8295-5

Keywords

Navigation