Skip to main content

Role of Members of the Nur (NR4A) Transcription Factors in Dopamine-Related Neurodegenerative and Neuropsychiatric Disorders

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

The control of motor behavior, learning, cognition, motivated behavior and hormone production represent a large series of physiological functions in which dopamine neurotransmission plays an important role. Clinical evidences suggest that dopaminergic pathways are altered in several neurological and psychiatric disorders. A gradual loss of midbrain dop-amine producing cells results in an extensive dopamine depletion that is accompanied by characteristic motor symptoms of Parkinson's disease. The main treatment for Parkinson's disease is based on dopamine replacement using the precursor L-DOPA for the biosynthesis of endogenous dopamine. At the other end of the spectrum, hyperactivity of the limbic dopamine system is thought to be a prominent driving force in the pathophysiology of schizophrenia. Although these disorders are well characterized in term of clinical symptoms, biological substrates underlying their symptopathologies remain elusive. In recent years, data supporting an important role for transcription factors of the Nur (NR4A) nuclear receptor subgroup in dopamine-mediated neurotransmission have emerged. Interestingly, modulation of Nur gene expression can be observed in brain pathological conditions and treatment of dopamine-related disorders, as evidenced by the modulation of these transcription factors in animal models of Parkinson's disease and schizophrenia and in post mortem human brain tissues from naïve and treated patients. This suggests that monitoring Nur expression might represent interesting biomarkers for dopamine-related disorders and their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett 2008;582:2–9.

    Article  PubMed  CAS  Google Scholar 

  2. Nagy L, Schwabe JW. Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 2004;29:317–324.

    Article  PubMed  CAS  Google Scholar 

  3. Shulman AI, Mangelsdorf DJ. Mechanisms of disease: Retinoid X receptor heterodimers in the metabolic syndrome. New England J Med 2005;353:604–615.

    Article  CAS  Google Scholar 

  4. Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 2004;3:950–964.

    Article  PubMed  CAS  Google Scholar 

  5. Evans RM. The nuclear receptor superfamily: A Rosetta Stone for physiology. Mol Endocrinol 2005;19:1429–1438.

    Article  PubMed  CAS  Google Scholar 

  6. Benoit G, Cooney A, Giguère V, et al. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006;58:798–836.

    Article  PubMed  CAS  Google Scholar 

  7. Gofflot F, Chartoire N, Vasseur L, et al. Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 2007;131:405–418.

    Article  PubMed  CAS  Google Scholar 

  8. Giguère V. Orphan nuclear receptors: from gene to function. Endocrinol Rev 1999;20:689–725.

    Article  Google Scholar 

  9. Dollé P, Fraulob V, Kastner P, et al. Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev 1994;45:91–104.

    Article  PubMed  Google Scholar 

  10. Liu Q, Linney E. The mouse retinoid-X receptor-gamma gene: genomic organization and evidence for functional iso-forms. Mol Endocrinol 1993;7:651–658.

    Article  PubMed  CAS  Google Scholar 

  11. Mangelsdorf DJ, Borgmeyer U, Heyman RA, et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 1992;6:329–344.

    Article  PubMed  CAS  Google Scholar 

  12. Krezel W, Dupé V, Mark M, et al. RXRγ null mice are apparently normal and compound RXRα+ /− /RXRβ −/− /RXRγ −/mutant mice are viable. Proc Natl Acad Sci USA 1996; 93:9010–9014.

    PubMed  CAS  Google Scholar 

  13. Krezel W, Kastner P, Chambon P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 1999;89:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  14. Heyman RA, Mangelsdorf DJ, Dyck JA, et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992;68:397–406.

    Article  PubMed  CAS  Google Scholar 

  15. Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 2002;3:843–853.

    Article  PubMed  CAS  Google Scholar 

  16. Perlmann T, Jansson L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and Nurr1. Genes Dev 1995;9:769–782.

    Article  PubMed  CAS  Google Scholar 

  17. Forman BM, Umesono K, Chen J, et al. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 1995;81:541–550.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Z, Benoit G, Liu J, et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 2003;423:555–560.

    Article  PubMed  CAS  Google Scholar 

  19. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 2005;25:317–340.

    Article  PubMed  CAS  Google Scholar 

  20. Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006;126:789–799.

    Article  PubMed  CAS  Google Scholar 

  21. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007;8:755–765.

    Article  PubMed  CAS  Google Scholar 

  22. Wallen-Mackenzie A, Mata de Urquiza A, Petersson S, et al. Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev 2003;17:3036–3047.

    Article  PubMed  CAS  Google Scholar 

  23. Mata de Urquiza A, Liu S, Sjöberg M, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000;290:2140–2144.

    Article  PubMed  Google Scholar 

  24. Egea PF, Mitschler A, Moras D. Molecular Recognition of Agonist Ligands by RXRs. Mol Endocrinol 2002;16:987–997.

    Article  PubMed  CAS  Google Scholar 

  25. Goldstein JT, Dobrzyn A, Clagett-Dame M, et al. Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Arch Biochem Biophys 2003;420:185–193.

    Article  PubMed  CAS  Google Scholar 

  26. Lengqvist J, Mata de Urquiza A, Bergman AC, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 2004;3:692–703.

    Article  PubMed  CAS  Google Scholar 

  27. Heneka MT, Landreth GE. PPARs in the brain. Biochim Biophys Acta 2007;1771:1031–1045.

    PubMed  CAS  Google Scholar 

  28. Bordet R, Ouk T, Petrault O, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegen-erative diseases. Biochem Soc Trans 2006;34:1341–1346.

    Article  PubMed  CAS  Google Scholar 

  29. Brodbeck J, Balestra ME, Saunders AM, et al. Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. Proc Natl Acad Sci USA 2008;105:1343–1346.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao X, Ou Z, Grotta JC, et al. Peroxisome-proliferator-activated receptor-gamma (PPARγ) activation protects neurons from NMDA excitotoxicity. Brain Res 2006;1073–1074:460–469.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxy-genase-2 overexpression after focal cerebral ischemia in rats. FASEB J 2006;20:1162–1175.

    Article  PubMed  CAS  Google Scholar 

  32. Hunter RL, Dragicevic N, Seifert K, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neu-rodegeneration in the nigrostriatal system. J Neurochem 2007;100:1375–1386.

    Article  PubMed  CAS  Google Scholar 

  33. Chakravarthy MV, Zhu Y, Lopez M, et al. Brain fatty acid synthase activates PPARα to maintain energy homeostasis. J Clin Invest 2007;117:2539–2352.

    Article  PubMed  CAS  Google Scholar 

  34. Whitney KD, Watson MA, Collins JL, et al. Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 2002;16:1378–1385.

    Article  PubMed  CAS  Google Scholar 

  35. Chiang MY, Misner D, Kempermann G, et al. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 1998;21:1353–1361.

    Article  PubMed  CAS  Google Scholar 

  36. Wietrzych M, Meziane H, Sutter A, et al. Working memory deficits in retinoid X receptor gamma-deficient mice. Learning & Memory 2005;12:318–326.

    Article  Google Scholar 

  37. Mey J, McCaffery P. Retinoic Acid signaling in the nervous system of adult vertebrates. Neuroscientist 2004;10:409–421.

    Article  PubMed  CAS  Google Scholar 

  38. Crandall J, Sakai Y, Zhang J, et al. 13-cis retinoic acid suppresses hippocampal cell division and hippocampal-depen-dent learning in mice. Proc Natl Acad Sci USA 2004;101:5111–5116.

    Article  PubMed  CAS  Google Scholar 

  39. McCaffery P, Zhang J, Crandall JE. Retinoic acid signaling and function in the adult hippocampus. J Neurobiol 2006;66:780–791.

    Article  PubMed  CAS  Google Scholar 

  40. Maxwell MA, Muscat GEO. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal 2005;4:e002 Epub.

    Google Scholar 

  41. Lee SL, Wesselschmidt RL, Linette GP, et al. Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 1995;269:532–535.

    Article  PubMed  CAS  Google Scholar 

  42. Lin B, Kolluri SK, Lin F, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004;116:527–540.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang XK. Targeting Nur77 translocation. Expert Opin Ther Targets 2007;11:69–79.

    Article  PubMed  CAS  Google Scholar 

  44. Martinez-Gonzalez J, Badimon L. The NR4A subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovasc Res 2005;65:609–618.

    Article  PubMed  CAS  Google Scholar 

  45. Bonta PI, van Tiel CM, Vo s M, et al. Nuclear receptors Nur77, Nurr1, and Nor-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler Thromb Vasc Biol 2006;26:2288–2294.

    Article  PubMed  CAS  Google Scholar 

  46. Bonta PI, Pols TWH, de Vries CJM. NR4A nuclear receptors in atherosclerosis and vein-graft disease. Trends Cardiovasc Med 2007;17:105–111.

    Article  PubMed  CAS  Google Scholar 

  47. Pei LM, Waki H, Vaitheesvaran B, et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 2006;12:1048–1055.

    Article  PubMed  CAS  Google Scholar 

  48. Pei LM, Castrillo A, Tontonoz P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol 2006;20:786–794.

    Article  PubMed  CAS  Google Scholar 

  49. Martens C, Bilodeau S, Maira M, et al. Protein-protein interactions and transcriptional antagonism between the subfamily of NGFI-B/Nur77 orphan nuclear receptors and glucocorti-coid receptor. Mol Endocrinol 2005;19:885–897.

    Article  PubMed  CAS  Google Scholar 

  50. Flaig R, Greschik H, Peluso-Iltis C, et al. Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. J Biol Chem 2005;280:19250–19258.

    Article  PubMed  CAS  Google Scholar 

  51. Ordentlich P, Yan Y, Zhou S, et al. Identification of the anti-neoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J Biol Chem 2003;278:24791–24799.

    Article  PubMed  CAS  Google Scholar 

  52. Wansa KDSA, Harris JM, Yan G, et al. The AF-1 domain of the orphan nuclear receptor Nor-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 2003;278:24776–24790.

    Article  PubMed  CAS  Google Scholar 

  53. Wansa KDSA, Harris JM, Muscat GEO. The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem 2002;277:33001–33011.

    Article  PubMed  CAS  Google Scholar 

  54. Wansa KDSA, Muscat GEO. TRAP220 is modulated by the antineoplastic agent 6-Mercaptopurine, and mediates the activation of the NR4A subgroup of nuclear receptors. J Mol Endocrinol 2005;34:835–848.

    Article  PubMed  CAS  Google Scholar 

  55. Mullican SE, Zhang S, Konopleva M, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 2007;13:730–735.

    Article  PubMed  CAS  Google Scholar 

  56. Codina A, Benoit G, Gooch JT, et al. Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting. J Biol Chem 2004;279:53338–53345.

    Article  PubMed  CAS  Google Scholar 

  57. Dubois C, Hengerer B, Mattes H. Identification of a potent agonist of the orphan nuclear receptor Nurr1. ChemMedChem 2006;1:955–958.

    Article  PubMed  CAS  Google Scholar 

  58. Hintermann S, Chiesi M, von Krosigk U, et al. Identification of a series of highly potent activators of the Nurr1 signaling pathway. Bioorg Med Chem Lett 2007;17:193–196.

    Article  PubMed  CAS  Google Scholar 

  59. Lévesque D, Rouillard C. Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends Neurosci 2007;30:22–30.

    Article  PubMed  CAS  Google Scholar 

  60. Morita K, Kawana K, Sodeyama M, et al. Selective allosteric ligand activation of the retinoid X receptor heterodimers of NGFI-B and Nurr1. Biochem Pharmacol 2005;71:98–107.

    Article  PubMed  CAS  Google Scholar 

  61. Zetterström RH, Williams R, Perlmann T, et al. Cellular expression of the immediate-early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Mol Brain Res 1996;41:111–120.

    Article  PubMed  Google Scholar 

  62. Ponnio T, Burton Q, Pereira FA, et al. The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Mol Cell Biol 2002;22:935–945.

    Article  PubMed  CAS  Google Scholar 

  63. DeYoung RA, Baker JC, Cado D, et al. The orphan steroid receptor Nur77 family member Nor-1 is essential for early mouse embryogenesis. J Biol Chem 2003;278:47104–47109.

    Article  PubMed  CAS  Google Scholar 

  64. Zetterström RH, Solomin L, Mitsiadis T, et al. Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor-1. Mol Endocrinol 1996;10:1656–1666.

    Article  PubMed  Google Scholar 

  65. Ponnio T, Conneely OM. Nor-1 regulates hippocampal axon guidance, pyramidal cell survival, and seizure susceptibility. Mol Cell Biol 2004;24:9070–9078.

    Article  PubMed  CAS  Google Scholar 

  66. von Hertzen LS, Giese KP. Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J Neurosci 2005;25:1935–1942.

    Article  CAS  Google Scholar 

  67. Pena de Ortiz S, Maldonado-Vlaar CS, Carrasquillo Y. Hippocampal expression of the orphan nuclear receptor gene hzf-3/Nurr1 during spatial discrimination learning. Neurobiol Learn Mem 2000;74:161–178.

    Article  CAS  Google Scholar 

  68. Colon-Cesario WI, Martinez-Montemayor MM, Morales S, et al. Knockdown of Nurr1 in the rat hippocampus: implications to spatial discrimination learning and memory. Learn Mem 2006;13:734–744.

    Article  PubMed  CAS  Google Scholar 

  69. Werme M, Thorén P, Olson L, et al. Addiction-prone Lewis but not Fischer rats develop compulsive running that coincides with downregulation of Nerve Growth Factor Inducible-B and Neuron-derived orphan receptor 1. J Neurosci 1999;19:6169–6174.

    PubMed  CAS  Google Scholar 

  70. Werme M, Olson L, Brené S. NGFI-B and Nor-1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats. Mol Brain Res 2000;76:18–24.

    Article  PubMed  CAS  Google Scholar 

  71. St-Hilaire M, Tremblay P-O, Lévesque D, et al. Effects of cocaine on c-fos and NGFI-B mRNA expression in trans-genic mice underexpressing glucocorticoid receptors. Neuropsychopharmacology 2003;28:478–489.

    Article  PubMed  CAS  Google Scholar 

  72. Bhardwaj SK, Beaudry G, Quirion R, et al. Neonatal ventral hippocampus lesion leads to reductions in Nerve Growth Factor Inducible-B mRNA in the prefrontal cortex and increased amphetamine response in the nucleus accumbens and dorsal striatum. Neuroscience 2003;122:669–676.

    Article  PubMed  CAS  Google Scholar 

  73. Zetterström RH, Solomin L, Jansson L, et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997;276:248–250.

    Article  PubMed  Google Scholar 

  74. Le WD, Conneely OM, Zou LL, et al. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol 1999;159:451–458.

    Article  PubMed  CAS  Google Scholar 

  75. Sakurada K, Ohshima-Sakurada M, Palmer TD, et al. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 1999;126:4017–4026.

    PubMed  CAS  Google Scholar 

  76. Hermanson E, Joseph B, Castro D, et al. Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 2003;288:324–334.

    Article  PubMed  CAS  Google Scholar 

  77. Sacchetti P, Brownschidle LA, Granneman JG, et al. Characterization of the 5′-flanking region of the human dop-amine transporter gene. Mol Brain Res 1999;74:167–174.

    Article  PubMed  CAS  Google Scholar 

  78. Sacchetti P, Mitchell TR, Granneman JG, et al. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 2001;76:1565–1572.

    Article  PubMed  CAS  Google Scholar 

  79. Ethier I, Beaudry G, St-Hilaire M, et al. The transcription factor NGFI-B (Nur77) and retinoids play a critical role in acute neuroleptic-induced extrapyramidal effect and striatal neuropeptide gene expression. Neuropsychopharmacology 2004;29:335–346.

    Article  PubMed  CAS  Google Scholar 

  80. St-Hilaire M, Bourhis E, Lévesque D, et al. Impaired behavioural and molecular adaptations to dopamine denervation and repeated L-DOPA treatment in Nur77 knockout mice. Eur J Neurosci 2006;24:795–805.

    Article  PubMed  Google Scholar 

  81. Gilbert F, Morissette M, St-Hilaire M, et al. Nur77 gene knockout alters dopamine neuron biochemical activity and dopamine turnover. Biol Psychiatry 2006;60:538–547.

    Article  PubMed  CAS  Google Scholar 

  82. Casey DE. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res 1991;4:109–120.

    Article  PubMed  CAS  Google Scholar 

  83. Serretti A, De Ronchi D, Lorenzi C, et al. New antipsychot-ics and schizophrenia: A review on efficacy and side effects. Curr Med Chem 2004;11:343–358.

    Article  PubMed  CAS  Google Scholar 

  84. Beaudry G, Langlois MC, Weppe I, et al. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor Nerve Growth Factor-Inducible B by haloperidol and clozapine in the rat forebrain. J Neurochem 2000;75:1694–1702.

    Article  PubMed  CAS  Google Scholar 

  85. Maheux J, Ethier I, Rouillard C, et al. Induction patterns of transcription factors of the Nur family (Nurr1, Nur77 and Nor-1) by typical and atypical antipsychotics in the mouse brain: Implication for their mechanism of action. J Pharmacol Exp Ther 2005;313:460–473.

    Article  PubMed  CAS  Google Scholar 

  86. Langlois MC, Beaudry G, Zekki H, et al. Impact of antipsy-chotic drug administration on the expression of nuclear receptors in the neocortex and striatum of the rat brain. Neuroscience 2001;106:117–128.

    Article  PubMed  CAS  Google Scholar 

  87. Ethier I, Kagechika H, Shudo K, R et al. Docosahexaenoic acid reduces haloperidol-induced dyskinesias in mice: Involvement of Nur77 and retinoid receptors. Biol Psychiatry 2004;56:522–526.

    Article  PubMed  CAS  Google Scholar 

  88. Xing GQ, Zhang L, Russell S, et al. Reduction of dopamine-related transcription factors Nurr1 and NGFI-B in the pre-frontal cortex in schizophrenia and bipolar disorders. Schizophr Res 2006;84:36–56.

    Article  PubMed  Google Scholar 

  89. Lipska BK, Halim ND, Segal PN, et al. Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 2002;22:2835–2842.

    PubMed  CAS  Google Scholar 

  90. Ujike H. Stimulant-induced psychosis and schizophrenia: the role of sensitization. Curr Psychiatr Rep 2002;4:177–184.

    Article  Google Scholar 

  91. Rojas P, Joodmardi E, Hong Y, et al. Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol Psychiatry 2007;12:756–766.

    Article  PubMed  CAS  Google Scholar 

  92. Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004;27:683–690.

    Article  PubMed  CAS  Google Scholar 

  93. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005;10:40–68.

    Article  PubMed  CAS  Google Scholar 

  94. Le W, Conneely OM, He Y, et al. Reduced Nurr1 expression increases the vulnerability of mesencephalic dop-amine neurons to MPTP-Induced injury. J Neurochem 1999;73:2218–2221.

    PubMed  CAS  Google Scholar 

  95. Eells JB, Lipska BK, Yeung SK, et al. Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dop-amine levels and increased stress-induced locomotor activity. Behav Brain Res 2002;136:267–275.

    Article  PubMed  CAS  Google Scholar 

  96. St-Hilaire M, Landry E, Lévesque D, et al. Denervation and repeated L-DOPA induce complex regulatory changes in neurochemical phenotypes of striatal neurons: Implication of a dopamine D1-dependent mechanism. Neurobiol Dis 2005;20:450–460.

    Article  PubMed  CAS  Google Scholar 

  97. St-Hilaire M, Landry E, Lévesque D, et. Denervation and repeated L-DOPA induce a coordinate expression of the transcription factor NGFI-B in striatal projection pathways in hemi-parkinsonian rats. Neurobiol Dis 2003;14:98–109.

    Article  PubMed  CAS  Google Scholar 

  98. van den Munckhof P, Gilbert F, Chamberland M, et al. Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in Aphakia mice, a model of Parkinson's disease. J Neurochem 2006;96:160–170.

    Article  PubMed  CAS  Google Scholar 

  99. Sgambato-Faure V, Buggia V, Gilbert F, et al. Coordinated and spatial upregulation of Arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dys-kinetic rats. J Neuropathol Exp Neurol 2005;64:936–947.

    Article  PubMed  CAS  Google Scholar 

  100. Bäckman C, Hoffer BJ, Misawa H, et al. Cellular mRNA expression of the transcription factor NGFI-B suggests a gene regulatory role in striatal opiate-peptide neurons. Brain Res 2001;903:26–32.

    Article  PubMed  Google Scholar 

  101. Gerfen CR, Miyachi S, Paletzki R, et al. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 2002;22:5042–5054.

    PubMed  CAS  Google Scholar 

  102. Hwang DY, Fleming SM, Ardayfio P, et al. 3,4-Dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient Aphakia mice: Behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 2005;25:2132–2137.

    Article  PubMed  CAS  Google Scholar 

  103. Samadi P, Grégoire L, Rouillard C, et al. Docosahexaenoic acid reduces Levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Annals Neurol 2006;59:282–288.

    Article  CAS  Google Scholar 

  104. Salem N Jr, Litman B, Kim HY, et al. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001;36:945–959.

    Article  PubMed  CAS  Google Scholar 

  105. Pearen MA, Ryall JG, Maxwell MA, et al. The orphan nuclear receptor, Nor-1, is a target of β-adrenergic signaling in skeletal muscle. Endocrinology 2006;147:5217–5227.

    Article  PubMed  CAS  Google Scholar 

  106. Bourhis E, Maheux J, Rouillard C, et al. Extracellular signalregulated kinases (ERK) and protein kinase C (PKC) activities are involved in the modulation of Nur77 and Nor-1 expression by dopaminergic drugs. J Neurochem 2008;106:875–888.

    Article  PubMed  CAS  Google Scholar 

  107. Zetterström RH, Lindqvist E, Mata de Urquiza A, et al. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 1999;11:407–416.

    Article  PubMed  Google Scholar 

  108. Chintharlapalli S, Burghardt R, Papineni S, et al. Activation of Nur77 by selected 1,1-bis(3 -indolyl)-1-(p-substituted phenyl) methanes induces apoptosis through nuclear pathways. J Biol Chem 2005;280:24903–24914.

    Article  PubMed  CAS  Google Scholar 

  109. Grimes DA, Han F, Panisset M, et al. Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov Disord 2006;21:906–909.

    Article  PubMed  Google Scholar 

  110. Jacobsen KX, Macdonald H, Lemonde S, et al. A Nurr1 point mutant, implicated in Parkinson's disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis 2008;29:117–122.

    Article  PubMed  CAS  Google Scholar 

  111. Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol 2005;77:128–138.

    Article  PubMed  CAS  Google Scholar 

  112. Xu PY, Liang R, Jankovic J, et al. Association of homozy-gous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson's disease. Neurology 2002;58:881–884.

    PubMed  CAS  Google Scholar 

  113. Le WD, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003;33:85–89.

    Article  PubMed  CAS  Google Scholar 

  114. Carmine A, Buervenich S, Galter D, et al. Nurr1 promoter polymorphisms: Parkinson's disease, schizophrenia, and personality traits. Am J Med Genet 2003;120B:51–57.

    Article  Google Scholar 

  115. Hering R, Petrovic S, Mietz EM, et al. Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 2004;62:1231–1232.

    PubMed  CAS  Google Scholar 

  116. Wellenbrock C, Hedrich K, Schafer N, et al. NR4A2 mutations are rare among European patients with familial Parkinson's disease. Ann Neurol 2003;54:415.

    Article  Google Scholar 

  117. Nichols WC, Uniacke SK, Pankratz N, et al. Evaluation of the role of Nurr1 in a large sample of familial Parkinson's disease. Mov Disord 2004;19:649–655.

    Article  PubMed  Google Scholar 

  118. Iwayama-Shigeno Y, Yamada K, Toyota T, et al. Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet 2003;118B:20–24.

    Article  Google Scholar 

  119. Ishiguro H, Okubo Y, Ohtsuki T, et al. Mutation analysis of the retinoid X receptor beta, Nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplo-type association of Nuclear-related receptor 1 gene to alcohol dependence. Am J Med Genet 2002;114:15–23.

    Article  PubMed  Google Scholar 

  120. Tan EK, Chung H, Zhao Y, et al. Genetic analysis of Nurr1 haplotypes in Parkinson's disease. Neurosci Lett 2003;347:139–142.

    Article  PubMed  CAS  Google Scholar 

  121. Chen YH, Tsai MT, Shaw CK, et al. Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients. Am J Med Genet 2001;105:753–757.

    Article  PubMed  CAS  Google Scholar 

  122. Müller Smith KM, Bauer L, Fischer M, et al. Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder. Am J Med Genet 2005;133B:57–63.

    Article  Google Scholar 

  123. Buervenich S, Carmine A, Arvidsson M, et al. Nurr1 mutations in cases of schizophrenia and manic-depressive disorder. Am J Med Genet 2000;96:808–813.

    Article  PubMed  CAS  Google Scholar 

  124. Okamoto Y, Mitani N, Tanaka S. A novel single nucleotide polymorphism in the 3 untranslated region of human retin-oid X receptor gamma gene. Mol Genet Metab 2003;80:473; author reply 474.

    Article  PubMed  CAS  Google Scholar 

  125. Romeo S, Menzaghi C, Bruno R, et al. Search for genetic variants in the retinoid X receptor-gamma-gene by poly-merase chain reaction-single-strand conformation polymorphism in patients with resistance to thyroid hormone without mutations in thyroid hormone receptor beta gene. Thyroid 2004;14:355–358.

    Article  PubMed  CAS  Google Scholar 

  126. Ohkura N, Hosono T, Maruyama K, et al. The human NGFI-B gene gives rise to two isoforms with different expression profiles. Biomed Res (Tokyo). 1999;20:213–218.

    CAS  Google Scholar 

  127. Ohkura N, Hosono T, Maruyama K, et al. An isoform of Nurr1 functions as a negative inhibitor of the NGFI-B family signaling. Biochim Biophys Acta 1999;1444:69–79.

    PubMed  CAS  Google Scholar 

  128. Chu Y P, Le WD, Kompoliti K, et al. Nurr1 in Parkinson's disease and related disorders. J Comp Neurol 2006;494:495–514.

    Article  PubMed  CAS  Google Scholar 

  129. Lapointe N, St-Hilaire M, Martinoli MG, et al. Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 2004;18:717–719.

    PubMed  CAS  Google Scholar 

  130. Tremblay ME, Saint-Pierre M, Bourhis E, et al. Neuroprotective effects of cystamine in aged parkinsonian mice. Neurobiol Aging 2006;27:862–870.

    Article  PubMed  CAS  Google Scholar 

  131. Bannon MJ, Pruetz B, Manning-Bog AB, et al. Decreased expression of the transcription factor Nurr1 in dopamine neurons of cocaine abusers. Proc Natl Acad Sci USA 2002;99:6382–6385.

    Article  PubMed  CAS  Google Scholar 

  132. Horvath MC, Kovacs GG, Kovari V, et al. Heroin abuse is characterized by discrete mesolimbic dopamine and opioid abnormalities and exaggerated Nuclear receptor-related 1 transcriptional decline with age. J Neurosci 2007;27:13371–13375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lévesque, D., Rouillard, C. (2009). Role of Members of the Nur (NR4A) Transcription Factors in Dopamine-Related Neurodegenerative and Neuropsychiatric Disorders. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2298-1_11

Download citation

Publish with us

Policies and ethics