Skip to main content

Microbial Phytases in Skirmishing and Management of Environmental Phosphorus Pollution

  • Chapter
  • First Online:
Biotechnology for Environmental Management and Resource Recovery

Abstract

Phytases are acid phosphatases which catalyze the hydrolysis of phytic acid (myo-inositol hexakis(dihydrogen phosphate)) to inorganic phosphate and myo-inositol through a series of myo-inositol phosphate intermediates and making insoluble and unavailable phytic acid available for animal assimilation. Phytic acid is a major stored form of organic phosphorus in plants such as cereal grains, legumes and oilseeds. The accumulation of phosphorus at intensive livestock production area has raised serious concerns of environmental pollution. Phytases are of significant value in effectively combating environmental phosphorus pollution. The microbial sources of phytases include bacteria, moulds and yeasts. The supplementation of animal feeds with microbial phytases increases the bioavailability of phosphorus and minerals, besides reducing the aquatic phosphorus pollution in the areas of intensive livestock production.

Microbial phytases are produced by solid state and submerged fermentations. The molecular masses of microbial phytases are in the range of 35–500 kDa depending upon the source, and they are active within a pH and temperature ranges of 4.5–7.5 and 45–70°C. Phytases not only degrade phytic acid but also ameliorate the nutritional status of the foods by making minerals such as iron, magnesium, zinc, phosphorus and proteins available for monogastric animals. This chapter describes the sources, production, characterization and applications of microbial phytases in phosphorus pollution management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad T, Rasool S, Sarwar, Haq A, Hasan Z (2000) Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chickens. Anim Feed Sci Technol 83:103–114

    Article  CAS  Google Scholar 

  • Ahmadi A, Tabatabaei MM, Aliarabi H, Saki AA, Siyar SA (2008) Performance and egg quality of laying hens affected by different sources of phytase. Pak J Biol Sci 11:2286–2288

    Article  PubMed  CAS  Google Scholar 

  • Ai Q, Mai K, Zhang W, Xu W, Tan B, Zhang C, Li H (2007) Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comp Biochem Physiol 147:502–508

    Article  CAS  Google Scholar 

  • Altaff K, Hassan S, Satyanarayana T (2008) Use of phytase in plant based feed for aquaculture industry: cost effective and eco-friendly practice: present scenario and future perspectives. J Aquat Biol 23:185–193

    Google Scholar 

  • Angelis MD, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Tanaka K, Kasai Z (1969) Formation of phytic acid in cereal grains. Ann N Y Acad Sci 165:801–814

    PubMed  CAS  Google Scholar 

  • Barrientos L, Scott JJ, Murthy PP (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Baruah KP, Sahu AK, Jain NP, Mukherjee KK, Debnath SC (2005) Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquacult Res 36:803–812

    Article  CAS  Google Scholar 

  • Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427

    PubMed  CAS  Google Scholar 

  • Bhavsar K, Shah P, Soni SK, Khire JM (2008) Influence of pretreatment of agriculture residues on phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. Afr J Biotechnol 7(8):1101–1106

    CAS  Google Scholar 

  • Billington WD (1993) Species diversity in the immunogenetic relationship between mother and fetus: is trophoblast insusceptibility to immunological destruction the only essential common feature for the maintenance of allogeneic pregnancy? Exp Clin Immunogenet 10(2):73–84

    PubMed  CAS  Google Scholar 

  • Boling SDD, Johnson MW, Wang ML, Parsons X, Koelkebeck CM, Zimmerman KW (2000) The effects of dietary available phosphorus levels and phytase performance of young and older laying hens. Poult Sci 79:224–230

    PubMed  CAS  Google Scholar 

  • Boling-Frankenbach SD, Peter CM, Douglas MW, Snow JL, Parsons CM, Baker DH (2001) Efficacy of phytase for increasing protein efficiency ratio values of feed ingredients. Poult Sci 80:1578–1584

    PubMed  CAS  Google Scholar 

  • Brenes A, Viveros A, Arija I, Centeno C, Pizarro M, Bravo C (2003) The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Anim Feed Sci Technol 110:201–219

    Article  CAS  Google Scholar 

  • Brocades (1991) DNA sequence encoding phytase. Patent EP 420, 358

    Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110(3):313–322

    Article  PubMed  CAS  Google Scholar 

  • Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  • Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41:79–83

    Article  CAS  Google Scholar 

  • Cheng ZJ, Hardy RW (2002) Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquacult Nutr 8:271–277

    Article  CAS  Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47(4):290–294

    Article  PubMed  CAS  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20(4):287–292

    Article  PubMed  CAS  Google Scholar 

  • Correia I, Aksu S, Adao P, Pessoa JC, Sheldon RA, Arends IWCE (2008) Vanadate substituted phytase: immobilization, structural characterization and performance for sulfoxidations. J Inorg Biochem 102:318–329

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1969) Ion exchange chromatography of inositol polyphosphates. Ann N Y Acad Sci 165:677–686

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1970) Inositol phosphates of microbial origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myoinositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci 23:1207–1220

    PubMed  CAS  Google Scholar 

  • de Velde FV, Lars Konemann K, Rantwijk FV, Sheldon RA (2000) The rational design of semisynthetic peroxidases. Biotechnol Bioeng 67(1):87–96

    Article  PubMed  Google Scholar 

  • Debnath D, Pal AK, Sahu NP, Jain KK, Yengkokpam S, Mukherjee SC (2005) Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquacult Res 36:180–187

    Article  CAS  Google Scholar 

  • Forster I, Higgs DA, Dosanjh BS, Rowshandeli M, Parr J (1999) Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11°C fresh water. Aquacult Nutr 179:109–125

    Article  CAS  Google Scholar 

  • Fredrikson M, Biot P, Alminger LM, Carlsson NG, Sandberg AS (2001) Production process for high-quality ­pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem 49:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Fu S, Sun J, Qian L, Li Z (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Ghareib M (1990) Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus. Acta Microbiol Immunol Hung 37(2):159–164

    CAS  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19:429–433

    Article  PubMed  CAS  Google Scholar 

  • Graf E, Empson KI, Eaton JW (1987) Phytic acid: a natural antioxidant. J Biol Chem 262:11647

    PubMed  CAS  Google Scholar 

  • Graham H, Simmins PH, Sands J (2003) Reducing environmental pollution using animal feed enzymes. Commun Agric Appl Biol Sci 68:285–289

    PubMed  CAS  Google Scholar 

  • Greaves MP, Anderson G, Webley DM (1967) The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim Biophys Acta 132:412–418

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J Biotechnol 48:153–159

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Konietzny U (1999) Improving enzymatic reduction of myo-inositol phosphates with inhibitory effects on mineral absorption in black beans (Phaseolus vulgaris var. preto). J Food Process Preserv 23:249–261

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140

    CAS  Google Scholar 

  • Greiner R, Konitzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341:201–206

    Article  PubMed  CAS  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007) Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung 54:121–138

    Article  PubMed  CAS  Google Scholar 

  • Han YW, Gallagher DJ (1987) Phytase production by Aspergillus ficuum on semi-solid substrate. J Ind Microbiol 2:195–200

    Article  CAS  Google Scholar 

  • Han YW, Lei XG (1999) Role of glycosylation in functional expression of an Aspergillus niger phytase (phy-A) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  PubMed  CAS  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential breadmaking additive. Eur Food Res Technol 213(4–5):317–322

    Article  CAS  Google Scholar 

  • Hassan S, Altaff K, Satyanarayana T (2009) Use of soybean meal supplemented with cell bound phytase for replacement of fish meal in the diet of juvenile milkfish, Chanos chanos. Pak J Nutr 8:341–344

    Article  CAS  Google Scholar 

  • Hassouni H, Ismaili-Alaoui M, Gaime-Perraud I, Augur C, Roussos S (2006) Effect of culture media and fermentation parameters on phytase production by the thermophilic fungus Myceliophthora thermophila in solid state fermentation. Micol Apl Int 18(2):29–36

    Google Scholar 

  • Hellstrom AM, Vazques-juarez R, Svanberg U, Andlid TA (2010) Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa. Int J Food Microbiol 136:352–358

    Article  PubMed  CAS  Google Scholar 

  • Howson SJ, Davis RP (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzyme Microb Technol 5:377–382

    Article  CAS  Google Scholar 

  • Hurrell RF, Reddy MB, Juillerat M, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219

    PubMed  CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148(Pt 7):2097–2109

    PubMed  CAS  Google Scholar 

  • In MJ, Seo SW, Kim DC, Oh NS (2009) Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain. Process Biochem 44:122–126

    Article  CAS  Google Scholar 

  • Iqbal TH, Lewis KO, Cooper BT (1994) Phytase activity in the human and rat small intestine. Gut 35:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Irving GCJ, Cosgrove DJ (1971) Inositol phosphate phosphatases of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci 24:547–557

    PubMed  CAS  Google Scholar 

  • Jareonkitmongkol S, Ohya M, Watanbe R, Takagi H, Nakamori S (1997) Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83:393–394

    Article  CAS  Google Scholar 

  • Jongbloed AW, Lenis NP (1998) Environmental concerns about animal manure. J Anim Sci 76:2641–2648

    PubMed  CAS  Google Scholar 

  • Jonson LF, Tate ME (1969) The conformational analysis of phytic acid based on NMR spectra. J Chem 47:63–73

    Google Scholar 

  • Juanpere J, Pérez-Vendrell AM, Brufau J (2004) Effect of microbial phytase on broilers fed barley-based diets in the presence or not of endogenous phytase. Anim Feed Sci Technol 115:265–279

    Article  CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2010) Improvement in cell-bound phytase activity of Pichia anomala by permeabilization and applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108(6):2041–2049

    PubMed  CAS  Google Scholar 

  • Kaur P, Kunze G, Satyanarayana T (2007) Yeast phytases: present scenario and future perspectives. Crit Rev Biotechnol 27:93–109

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Singh B, Böer E, Straube N, Piontek M, Satyanarayana T, Kunze G (2010) Pphy-a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY and characterization of the recombinant enzyme. J Biotechnol 149(1–2):8–15

    Article  PubMed  CAS  Google Scholar 

  • Kemme PA, Jongbloed AW, Mroz Z, Beynen AC (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J Anim Sci 75:2129–2138

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum. Lett Appl Microbiol 30:325–329

    Article  PubMed  CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed  CAS  Google Scholar 

  • Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998) Purification and properties of thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol 22:2–7

    Article  CAS  Google Scholar 

  • Krebs B, Hoding B, Kubart SM, Workie A, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M (1998) Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197

    Google Scholar 

  • Kujawski M, Zyła K (1992) Relationship between citric acid production and accumulation of phytate-degrading enzymes in Aspergillus niger mycelia. Acta Microbiol Pol 41(3–4):187–191

    PubMed  CAS  Google Scholar 

  • Lamberchts C, Boze H, Segueilha L, Moulin G, Galzy P (1993) Influence of culture conditions on the bit syntheses of Schwanniomyces castellii phytase. Biotechnol Lett 15:399–404

    Article  Google Scholar 

  • Lambrechts C, Boze H, Moulin G, Galzy P (1992) Utilization of phytate by some yeasts. Biotechnol Lett 14:61–66

    Article  CAS  Google Scholar 

  • Lassen SF, Breinholt J, Ostergaard PR, Brugger R, Bischoff A, Wyss M et al (2001) Expression, gene cloning and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp., and Trametes pubescens. Appl Environ Microbiol 67:4701–4707

    Article  PubMed  CAS  Google Scholar 

  • Laumen K, Ghisalba O (1994) Preparative scale chemo enzymatic synthesis of optically pure D-myo-inositol-1-phosphate. Biosci Biotechnol Biochem 58:2046–2049

    Article  CAS  Google Scholar 

  • Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Microbiol Biotechnol 57:474–481

    Article  CAS  Google Scholar 

  • Lei XG, Ku PK, Miller ER, Yokoyama MT, Ullrey DE (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J Anim Sci 72:139–143

    PubMed  CAS  Google Scholar 

  • Li MH, Robinson EH (1997) Microbial phytase can replace inorganic phosphorus supplements in channel catfish Ictalurus punctatus. J World Aquacult Soc 28:402–406

    Article  Google Scholar 

  • Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Liu ZQ, Chi ZM (2008) Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology. Bioresour Technol 99:6386–6390

    Article  PubMed  CAS  Google Scholar 

  • Maenz DD, Classen HL (1998) Phytase activity in small intestine brush-border membrane of the chicken. Poult Sci 77:557–564

    PubMed  CAS  Google Scholar 

  • Maga JA (1982) Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. Crit Rev Food Sci Nutr 16:1–48

    PubMed  CAS  Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon APGM (1997) The phytase subfamily of histidine acid phosphatase: isolation of genes for two novel phytases from fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  PubMed  CAS  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2005) Supplementation of waste tea fungal biomass as a dietary ingredient for broiler chicks. Bioresour Technol 96:1443–1448

    Article  CAS  Google Scholar 

  • Nagashima T, Tange T, Anazawa H (1999) Dephosphorylation of phytate by using Aspergillus niger phytase with a high affinity for phytate. Appl Environ Microbiol 65(10):4682–4684

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    Article  PubMed  CAS  Google Scholar 

  • Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pandey A (2004) Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:205–214

    Article  PubMed  CAS  Google Scholar 

  • Nayini NR, Markakis P (1984) The phytase of yeast. Lebensmittel-Wissenchaftund Technologie 17:24–26

    CAS  Google Scholar 

  • Nelson T, Shieh TR, Wodzinski RJ, Ware JH (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J Nutr 101:1289–1293

    PubMed  CAS  Google Scholar 

  • Pandey P, Selvakumar P, Soccol CR et al (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Henriquez-Huecas M, Mitchell DB, van Loon APGM (1997a) Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim Biophys Acta 1353:217–223

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, van Loon APGM (1997b) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    PubMed  CAS  Google Scholar 

  • Pillai UP, Manoharan V, Lisle A, Li X, Bryden W (2009) Phytase supplemented poultry diets affect soluble phosphorus and nitrogen in manure and manure-amended soil. J Environ Qual 38:1700–1708

    Article  PubMed  CAS  Google Scholar 

  • Powar VK, JagannathanV (1967) Phytase from Bacillus subtilis. Indian J biochem 4(3):184–185

    Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    PubMed  CAS  Google Scholar 

  • Quan CS, Zhang LH, Wang YJ, Ohta YY (2001) Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J Biosci Bioeng 92(2):154–160

    PubMed  CAS  Google Scholar 

  • Quan CS, Fan SD, Zhang LH, Wang YJ, Ohta Y (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94(5):419–425

    PubMed  CAS  Google Scholar 

  • Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Krishnan R, Nampoothiri KM, Szackacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oil cakes as substrates. Process Biochem 40(5):1749–1754

    Article  CAS  Google Scholar 

  • Rao DE, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechnol 29(2):182–198

    Article  PubMed  CAS  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytases in legumes and cereals. Adv Food Res 82:1–92

    Article  Google Scholar 

  • Revy PS, Jondreville C, Dourmad JY, Nys Y (2006) Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. J Anim Physiol Anim Nutr 90(1–2):50–59

    Article  CAS  Google Scholar 

  • Richard LC, Stephen RC, John CP, Patricia AS, Craig A (1998) Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Can J Fish Aquat Sci 55(5):1169–1178

    Article  Google Scholar 

  • Robinson EH, Li MH, Manning BB (2002) Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. J Appl Aquacult 12:81–88

    Article  Google Scholar 

  • Rodehutscord M, Pfeffer E (1995) Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Sci Technol 31:143–147

    Google Scholar 

  • Rodriguez E, Porres JM, Han Y, Lei XG (1999) Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-ppA) to trypsin and pepsin in vitro. Arch Biochem Biophys 365:262–267

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Mullaney EJ, Lei XG (2000) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378

    Article  PubMed  CAS  Google Scholar 

  • Sajjadi M, Carter CG (2004) Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in atlantic salmon (Salmo salar, L.). Aquacult Nutr 10:135–142

    Article  CAS  Google Scholar 

  • Sandberg AS, Larsen T, Sandstorm B (1993) High dietary calcium level decreases phytate degradation in pigs fed a rapeseed diet. J Nutr 123:559–566

    PubMed  CAS  Google Scholar 

  • Sano L, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Schafer A, Koppe WM, Meyer-Burgodorff KH, Gunther KD (1995) Effects of a microbial phytase on the utilization of native phosphorus by carp in a diet based on a soyabean meal. Water Sci Technol 31:149–155

    Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of phytase from Schwanniomyces castellii. J Ferment Bioeng 74:7–11

    Article  CAS  Google Scholar 

  • Selle PH, Ravindran R (2007) Microbial phytase in piggery nutrition. Anim Feed Sci Technol 135:1–41

    Article  CAS  Google Scholar 

  • Shieh TR, Ware JH (1968) Survey of microorganism for the production of extracellular phytase. Appl Microbiol 16:1348–1351

    PubMed  CAS  Google Scholar 

  • Shieh TR, Wodzinski RJ, Ware JH (1969) Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus ficuum. J Bacteriol 100:1161–1165

    PubMed  CAS  Google Scholar 

  • Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269

    Article  CAS  Google Scholar 

  • Shimizu M (1993) Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Biosci Biotechnol Biochem 57:1364–1365

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2006a) Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl Biochem Biotechnol 133:239–250

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2006b) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101:344–352

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008a) Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. Bioresour Technol 99:824–830

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008b) Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresour Technol 99:2824–2830

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008c) Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 105:1858–1865

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2009) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100:2046–2051

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Bioresour Technol 100:2046–2051

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011a) Phytases from thermophilic molds: their production, characteristics and multifarious applications. Process Biochem 46(7):1391–1398

    Google Scholar 

  • Singh B, Satyanarayana T (2011b) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17(2):93–103

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Kaur P, Satyanarayana T (2006) Fungal phytases for improving the nutritional status of foods and combating environmental phosphorus pollution. In: Chauhan AK, Verma A (eds) Microbes: health and environment. IK International Publishers, New Delhi, pp 289–326

    Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6(3):69–87

    CAS  Google Scholar 

  • Siren M (1986a) Stabilized pharmaceutical and biological material composition. Patent SE 003, 165

    Google Scholar 

  • Siren M (1986b) New myo-inositol triphosphoric acid isomer. Patent SW 052, 950

    Google Scholar 

  • Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388

    Article  CAS  Google Scholar 

  • Stahl CH, Han YM, Roneker KR, House WA, Lei XG (1999) Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J Anim Sci 77:2135–2142

    PubMed  CAS  Google Scholar 

  • Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett 25(10):827–831

    Article  PubMed  CAS  Google Scholar 

  • Sunita K, Kim YO, Lee JK, Oh TK (2000) Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Biochem Eng J 5:51–56

    Article  Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M (1907) Ueber ein Enzym “Phytase” das “Anhydro-oxy-methylen diphosphorsaure” Spaltet. Tokyo Imperal Univ Coll Agric Bull 7:503–512

    Google Scholar 

  • Tambe SM, Kakli SG, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes; evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27

    Article  CAS  Google Scholar 

  • Tatala S, Svanberg U, Mduma B (1998) Low dietary iron availability is a major cause of anemia: a nutrition survey in the Lindi District of Tanzania. Am J Clin Nutr 68:1171–1178

    Google Scholar 

  • Tyagi PK, Verma SVS (1998) Phytate phosphorus content of some common poultry feed stuffs. Indian J Poult Sci 33:86–88

    Google Scholar 

  • Tye AJ, Siu FK, Leung TY, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59(2–3):190–197

    PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290:1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Usmani N, Jafri AK (2002) Influence of dietry phytic acid on growth, conversion efficiency and carcass composition of mrigal Cirrhinus mrigala (hamilton) fry. J World Aquacult Soc 33:199–204

    Article  Google Scholar 

  • Van Weerd JH, Khalaf KHA, Aartsen FJ, Tijssen PAT (1999) Balance trials with African catfish Clarias gariepinus fed phytase-treated soybean meal-based diets. Aquacult Nutr 5:135–142

    Article  Google Scholar 

  • Vats P, Banerjee UC (2002) Studies on the production of phytase by a newly isolated sp. of Aspergillus niger van Teigham obtained from rotten wood-logs. Process Biochem 38:211–217

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 35:3–14

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2005) Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J Ind Microbiol Biotechnol 32:141–147

    Article  PubMed  CAS  Google Scholar 

  • Vats P, Bhushan B, Banerjee UC (2009) Studies on the dephosphorylation of phytic acid in live stock and feed using phytase from Aspergillus niger van Teighem. Bioresour Technol 100:287–291

    Article  PubMed  CAS  Google Scholar 

  • Vielma J, Ruohonen K, Gabaudan J, Vogel K (2004) Top-spraying soybean meal-based diets with phytase improves protein and mineral digestibilities but not lysine utilization in rainbow trout, Oncorhynchus mykiss (walbaum). Aquacult Res 35:955–964

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast Pichia anomala. Biotechnol Lett 23:551–554

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002) Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem 37:999–1004

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth and phosphate assimilation of poultry birds using cell-bound phytase of Pichia anomala. World J Microbiol Biotechnol 22:553–558

    Article  CAS  Google Scholar 

  • Vohra A, Kaur P, Satyanarayana T (2011) Production, characteristics and applications of the cell-bound phytase of Pichia anomala. Antonie Van Leeuwenhoek 99:51–55

    Article  PubMed  CAS  Google Scholar 

  • Volfova O, Dvorakova J, Hanzlikova A, Jandera A (1994) Phytase from Aspergillus niger. Folia Microbiol (Praha) 39(6):481–484

    Article  CAS  Google Scholar 

  • Wang HL, Savain W, Hesseltine CW (1980) Phytase of molds used in oriental food fermentation. J Food Sci 45:1261–1266

    Google Scholar 

  • Wang Y, Gao X, Su Q, Wu W, An L (2007) Cloning, expression and enzyme characterization of an acid heat stable phytse from Aspergillus fumigatus WY-2. Curr Microbiol 55(1):65–70

    Article  PubMed  CAS  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–301

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt O (1999a) Biochemical characterization of fungal phytases (myoinositolhexakisphosphate- phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    PubMed  CAS  Google Scholar 

  • Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A (1999b) Biophysical characterization of fungal phytases (myo-inositolhexakisphosphate-phosphohydrolases): molecular size, glycosylation pattern and engineering of proteolytic resistance. Appl Environ Microbiol 65:359–366

    PubMed  CAS  Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222(1):27–36

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35(6):745–751

    Article  CAS  Google Scholar 

  • Yan W, Reigh RC (2002) Effects of fungal phytase on utilization of dietary proteins and minerals and dephosphorylation of phytic acid in the alimentary tract of channel catfish, Ictalurus punctatus fed an all plant-protein diet. J World Aquacult Soc 33:10–22

    Article  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144(Pt 6):1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Yanke LJ, Selinger LB, Cheng KJ (1999) Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol 29:20–15

    Article  CAS  Google Scholar 

  • Yi Z, Kornegay ET, Ravindran V, Denbow DM (1996) Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult Sci 75:240–249

    Article  PubMed  CAS  Google Scholar 

  • Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Choi YJ, Min K, Cho KK, Kim JW, Lee SC (1996) Isolation and identification of phytase producing bacterium, Enterobacter sp. 4 and enzymatic properties of phytase enzyme. Enzyme Microb Technol 18:449–454

    Article  CAS  Google Scholar 

  • Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM (2010) Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour Technol 101:4125–4131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank University Grants Commission (UGC) and Department of Science and Technology (DST), New Delhi, for providing financial assistance during the course of writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sapna, Singh, B., Singh, D., Sharma, K.K. (2013). Microbial Phytases in Skirmishing and Management of Environmental Phosphorus Pollution. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_13

Download citation

Publish with us

Policies and ethics