Skip to main content

Novel Monolithic Capillary Column with Well-Defined Macropores Based on Poly(styrene-co-divinylbenzene)

  • Chapter
  • First Online:
Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes

Part of the book series: Springer Theses ((Springer Theses))

  • 1398 Accesses

Abstract

Macroporous polymer monoliths based on poly(styrene-co-divinylbenzene) with varied styrene/divinylbenzene ratios have been prepared by organotellurium-mediated living radical polymerization. The well-defined co-continuous macroporous structure can be obtained by polymerization-induced spinodal decomposition, and the pore structures are controlled by adjusting the starting composition. The effects of the addition of styrene on the pore characteristics have been investigated. In addition, the separation efficiency of small molecules (alkylbenzenes) in the obtained monoliths has been evaluated in the capillary format by high-performance liquid chromatography (HPLC) under the isocratic reversed-phase mode. Baseline separations of these molecules with a low pressure drop (~2 MPa) have been achieved owing to the well-defined macropores and to the less-heterogeneous crosslinked networks. It was also revealed that the increase in styrene/divinylbenzene ratio decreased the retention of alkylbenezenes on the polymer monolithic column due to the less crosslink density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svec F, Tennikova TB, Deyl Z (eds) (2003) Monolithic materials: preparation, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  2. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168. doi:10.1016/j.chroma.2007.05.090

    Article  CAS  Google Scholar 

  3. Núñez O, Nakanishi K, Tanaka N (2008) Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A 1191:231–252. doi:10.1016/j.chroma.2008.02.029

    Article  Google Scholar 

  4. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924. doi:10.1016/j.chroma.2009.09.073

    Article  CAS  Google Scholar 

  5. Unger KK, Tanaka N, Machtejevas E (eds) (2011) Monolithic silicas in separation science: concepts, syntheses, characterization, modeling and applications. Wiley, Weinheim

    Google Scholar 

  6. Svec F, Fréchet JMJ (1992) Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem 64:820–822. doi:10.1021/ac00031a022

    Article  CAS  Google Scholar 

  7. Peters EC, Petro M, Svec F, Fréchet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69:3646–3649. doi:10.1021/ac970377w

    Article  CAS  Google Scholar 

  8. Gusev I, Huang X, Horváth C (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273–290. doi:10.1016/S0021-9673(99)00697-4

    Article  CAS  Google Scholar 

  9. Ericson C, Holm J, Ericson T, Hjertén S (2000) Electroosmosis- and pressure-driven chromatography in chips using continuous beds. Anal Chem 72:81–87. doi:10.1021/ac990802g

    Article  CAS  Google Scholar 

  10. Hoegger D, Freitag R (2001) Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography. J Chromatogr A 914:211–222. doi:10.1016/S0021-9673(00)01119-5

    Article  CAS  Google Scholar 

  11. Throckmorton DJ, Shepodd TJ, Singh AK (2002) Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths. Anal Chem 74:784–789. doi:10.1021/ac011077o

    Article  CAS  Google Scholar 

  12. Lee D, Svec F, Fréchet JMJ (2004) Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins. J Chromatogr A 1051:53–60. doi:10.1016/j.chroma.2004.04.047

    Article  CAS  Google Scholar 

  13. Eeltink S, Herrero-Martinez JM, Rozing GP, Schoenmakers PJ, Kok WT (2005) Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography. Anal Chem 77:7342–7347. doi:10.1021/ac051093b

    Article  CAS  Google Scholar 

  14. Reichmuth DS, Shepodd TJ, Kirby BJ (2005) Microchip HPLC of peptides and proteins. Anal Chem 77:2997–3000. doi:10.1021/ac048358r

    Article  CAS  Google Scholar 

  15. Buchmeiser MR (2007) Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer 48:2187–2198. doi:10.1016/j.polymer.2007.02.045

    Article  CAS  Google Scholar 

  16. Urban J, Jandera P, Schoenmakers P (2007) Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. J Chromatogr A 1150:279–289. doi:10.1016/j.chroma.2006.09.065

    Article  CAS  Google Scholar 

  17. Smith NW, Jiang Z (2008) Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 1184:416–440. doi:10.1016/j.chroma.2007.09.027

    Article  CAS  Google Scholar 

  18. Wu R, Hu L, Wang F, Ye M, Zou H (2008) Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 1150:369–392. doi:10.1016/j.chroma.2007.09.022

    Google Scholar 

  19. Haginaka J (2009) Molecularly imprinted polymers as affinity-based separation media for sample preparation. J Sep Sci 32:1548–1565. doi:10.1002/jssc.200900085

    Article  CAS  Google Scholar 

  20. Li Y, Tolley HD, Lee ML (2010) Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins. J Chromatogr A 1217:4934–4945. doi:10.1016/j.chroma.2010.05.048

    Article  CAS  Google Scholar 

  21. Liu M, Liu H, Liu Y, Bai L, Yang G, Yang C, Cheng J (2011) Preparation and characterization of temperature-responsive poly(N-isopropylacrylamide-co-N, N’-methylenebisacrylamide) monolith for HPLC. J Chromatogr A 1218:286–292. doi:10.1016/j.chroma.2010.11.037

    Article  CAS  Google Scholar 

  22. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatographyl. Anal Chem 68:3498–3501. doi:10.1021/ac960281m

    Article  CAS  Google Scholar 

  23. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1997) Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J Chromatogr A 762:135–146. doi:10.1016/S0021-9673(96)00944-2

    Article  CAS  Google Scholar 

  24. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112. doi:10.1023/A:1009627216939

    Article  CAS  Google Scholar 

  25. Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863–873. doi:10.1021/ar600034p

    Article  CAS  Google Scholar 

  26. Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shikata H, Soga N (2000) Formation of hierarchical pore structure in silica gel. J Sol–Gel Sci Technol 17:191–210. doi:10.1023/A:1008707804908

    Article  CAS  Google Scholar 

  27. Veverka P, Jeřábek K (1999) Mechanism of hypercrosslinking of chloromethylated styrene-divinylbenzene copolymers. React Funct Polym 41:21–25. doi:10.1016/S1381-5148(99)00030-9

    Article  CAS  Google Scholar 

  28. Coufal P, Čihák M, Suchánková J, Tesařová E, Bosáková Z, Štulik K (2002) Methacrylate monolithic columns of 320 µm ID for capillary liquid chromatography. J Chromatogr A 946:99–106. doi:10.1016/S0021-9673(01)01570-9

    Article  CAS  Google Scholar 

  29. Moravcová D, Jandera P, Urban J, Planeta J (2003) Characterization of polymer monolithic stationary phases for capillary HPLC. J Sep Sci 26:1005–1016. doi:10.1002/jssc.200301498

    Article  Google Scholar 

  30. Lubbad SH, Buchmeiser MR (2009) Highly cross-linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. J Sep Sci 32:2521–2529. doi:10.1002/jssc.200900188

    Article  CAS  Google Scholar 

  31. Lubbad SH, Buchmeiser MR (2010) Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. J Chromatogr A 1217:3223–3230. doi:10.1016/j.chroma.2009.10.090

    Article  CAS  Google Scholar 

  32. Urban J, Svec F, Fréchet JMJ (2010) Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column. Anal Chem 82:1621–1623. doi:10.1021/ac100008n

    Article  CAS  Google Scholar 

  33. Urban J, Svec F, Fréchet JMJ (2010) Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J Chromatogr A 1217:8212–8221. doi:10.1016/j.chroma.2010.10.100

    Article  CAS  Google Scholar 

  34. Nischang I, Teasdale I, Brüggemann O (2010) Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J Chromatogr A 1217:7514–7522. doi:10.1016/j.chroma.2010.09.077

    Article  CAS  Google Scholar 

  35. Nischang I, Teasdale I, Brüggemann O (2011) Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400:2289–2304. doi:10.1007/s00216-010-4579-6

    Article  CAS  Google Scholar 

  36. Kanamori K, Nakanishi K, Hanada T (2006) Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. J Sep Sci 29:2463–2470. doi:10.1002/jssc.200600163

    Article  CAS  Google Scholar 

  37. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34:317–350. doi:10.1016/j.progpolymsci.2009.01.001

    Article  CAS  Google Scholar 

  38. Peters EC, Svec F, Fréchet JMJ (1999) Control of porous properties and surface chemistry in “molded” porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 32:6377–6379. doi:10.1021/ma990538t

    Article  CAS  Google Scholar 

  39. Viklund C, Nordström A, Irgum K (2001) Preparation of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by grafting. Macromolecules 34:4361–4369. doi:10.1021/ma001435+

    Article  CAS  Google Scholar 

  40. Buchmeiser MR, Atzl N, Bonn GK (1997) Ring-opening-metathesis polymerization for the preparation of carboxylic-acid-functionalized, high-capacity polymers for use in separation techniques. J Am Chem Soc 119:9166–9174. doi:10.1021/ja970359w

    Article  CAS  Google Scholar 

  41. Sinner F, Buchmeiser MR (2000) A new class of continuous polymer supports prepared by ring-opening metathesis polymerization: a straightforward route to functionalized monoliths. Macromolecules 33:5777–5786. doi:10.1021/ma000322n

    Article  CAS  Google Scholar 

  42. Zhang R, Qi L, Xin P, Yang G, Chen Y (2010) Preparation of macroporous monolith with three dimensional bicontinuous skeleton structure by atom transfer radical polymerization for HPLC. Polymer 51:1703–1708. doi:10.1016/j.polymer.2010.02.002

    Article  CAS  Google Scholar 

  43. Yang G, Bai L, Yan C, Gu Y, Ma J (2011) Prparation of a strong-cation exchange monolith by a novel method and its application in the separation of lgG on high performance liquid chromatography. Talanta 85:2666–2672. doi:10.1016/j.talanta.2011.08.048

    Article  CAS  Google Scholar 

  44. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:2407–2411. doi:10.1002/adma.200601026

    Article  CAS  Google Scholar 

  45. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Pore formation in poly(divinylbenzene) networks derived from organotellurium-mediated living radical polymerization. Macromolecules 42:1270–1277. doi:10.1021/ma802343a

    Article  CAS  Google Scholar 

  46. Kanamori K, Hasegawa J, Nakanishi K, Hanada T (2008) Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization. Macromolecules 41:7186–7193. doi:10.1021/ma800563p

    Article  CAS  Google Scholar 

  47. Hasegawa G, Kanamori K, Nakanishi K, Yamago S (2011) Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer 52:4644–4647. doi:10.1016/j.polymer.2011.08.028

    Article  CAS  Google Scholar 

  48. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Rigid crosslinked polyacrylamide monoliths with well-defined macropores synthesized by living polymerization. Macromol Rapid Commun 30:986–990. doi:10.1002/marc.200900066

    Article  CAS  Google Scholar 

  49. Flory PJ (1971) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  50. Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H (2004) Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J Sep Sci 27:874–886. doi:10.1002/jssc.200401816

    Article  CAS  Google Scholar 

  51. Yu Q, Zhou M, Ding Y, Jiang B, Zhu S (2007) Development of networks in atom transfer radical polymerization of dimethacrylates. Polymer 48:7058–7064. doi:10.1016/j.polymer.2007.10.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Novel Monolithic Capillary Column with Well-Defined Macropores Based on Poly(styrene-co-divinylbenzene). In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_4

Download citation

Publish with us

Policies and ethics