Skip to main content

Control of Bacterial Heat Shock and Virulence Genes by RNA Thermometers

  • Chapter
Regulatory RNAs in Prokaryotes

Abstract

Bacteria have developed numerous strategies in order to sense and respond to environmental challenges. Apart from well-known, protein-based mechanisms, RNAdependent post-transcriptional gene regulation has recently been recognized as an important layer of control. RNA thermometers are located in the 5’-untranslated region of temperature-controlled mRNAs, typically encoding heat shock or virulence genes. They prevent translation at low temperatures by trapping the Shine- Dalgarno (SD) sequence in a complex structure that prevents ribosome access. Partial melting of the structure by a temperature increase to 37 °C (virulence genes) or higher (heat shock genes) liberates the SD sequence thus permitting access of the 30S ribosome and translation initiation. Since melting and base pairing are reversible processes, translation is shut off upon return to lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altuvia S, Kornitzer D, Teff D, Oppenheim AB (1989) Alternative mRNA structures of the cIII gene of bacteriophage ? determine the rate of its translation initiation. J Mol Biol 210: 265–280.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Ragaz C, Kreuger E, Narberhaus F (2003) Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 278: 47915–47921.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Maris C, Allain FH, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25: 2487–2497.

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37 °C by mRNA stabilization. Mol Microbiol 23: 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CO, Pon CL (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37: 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Hoe NP, Goguen JD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175: 7901–7909.

    PubMed  CAS  Google Scholar 

  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551–561.

    Article  PubMed  Google Scholar 

  • Johansson J, Cossart P (2003) RNA-mediated control of virulence gene expression in bacterial pathogens. Trends Microbiol 11: 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66: 2661–2676.

    Article  PubMed  CAS  Google Scholar 

  • Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F (2011) Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 39: in press.

    Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding competent state. EMBO J 16: 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139: 770–779.

    Article  PubMed  CAS  Google Scholar 

  • Morita M, Kanemori M, Yanagi H, Yura T (1999a) Heat-induced synthesis of s32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181: 401–410.

    PubMed  CAS  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999b) Translational induction of heat shock transcription factor s32: evidence for a built-in RNA thermosensor. Genes Dev 13: 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F, Vogel J (2009) Regulatory RNAs in prokaryotes: here, there and everywhere. Mol Microbiol 74: 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA biol 7: 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Neupert J, Karcher D, Bock R (2008) Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 36: e124.

    Article  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001a) mRNAbased thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29: 4800–4807.

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Krstulovic NP, Perret X, Narberhaus F (2001b) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M (2000) The cold shock reponse. In Bacterial stress responses. Storz, G. and Hengge-Aronis, R. (eds). Washington, D. C.: ASM Press, pp. 33–45.

    Google Scholar 

  • Renzoni A, Klarsfeld A, Dramsi S, Cossart P (1997) Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 65: 1515–1518.

    PubMed  CAS  Google Scholar 

  • Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperatureinduced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38: 3834–3847.

    Article  PubMed  CAS  Google Scholar 

  • Schumann W (2009) Temperature sensors of eubacteria. Adv Appl Microbiol 67: 213–256.

    Article  PubMed  CAS  Google Scholar 

  • Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8: 776–790.

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Prakash JS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74: 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperonemediated refolding. Proc Natl Aca. Sci USA 98: 3098–3103.

    Article  Google Scholar 

  • Uppal S, Akkipeddi VS, Jawali N (2008) Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5’-untranslated region. FEMS Microbiol Lett 279: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand, MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20: 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F (2005) RNA thermometers are common in a-and ?-proteobacteria. Biol Chem 386: 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (2007) FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65: 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Kortmann J, Gesing S, Narberhaus F (2008) Generation of synthetic RNAbased thermosensors. Biol Chem 389: 1319–1326.

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Gaubig LC, Klinkert B, Narberhaus F (2009) The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. RNA Biol 6: 455–463.

    Article  PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4: 1024–1032.

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59: 487–517.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Mitta M, Inouye M (1999) Mutation analysis of the 5’ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181: 6284–6291.

    PubMed  CAS  Google Scholar 

  • Yura T, Kanemori M, Morita MT (2000) The heat shock response: regulation and function. In Bacterial stress responses. Storz, G. and Hengge-Aronis, R. (eds). Washington, D. C.: ASM Press, pp. 3–18.

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Narberhaus, F. (2012). Control of Bacterial Heat Shock and Virulence Genes by RNA Thermometers. In: Regulatory RNAs in Prokaryotes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0218-3_10

Download citation

Publish with us

Policies and ethics