Skip to main content

Störungen des Energiestoffwechsels

  • Chapter
  • First Online:
Pädiatrie

Zusammenfassung

Die Störungen der mitochondrialen Fettsäurenoxidation und des Ketonstoffwechsels wurden in den letzten 25 Jahren anhand der zugrunde liegenden Enzymdefekte identifiziert. Es handelt sich in allen Fällen um autosomal-rezessiv vererbte Erkrankungen. Mittlerweile sind mehr als 20 Enzym- und Transportdefekte bekannt.

Die mitochondriale Fettsäurenoxidation umfasst:

  • den Transport der Fettsäuren (FS) in die Mitochondrien (Carnitintransportsystem),

  • die mitochondriale β-Oxidation,

  • den Elektronentransfer zur Atmungskette.

Bei den Störungen des Ketonstoffwechsels werden Störungen der Ketogenese und Störungen der Ketolyse unterschieden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Andresen BS, Olpin S, Poorthuis BJ et al (1999) Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet 64:479–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andresen BS, Dobrowolski SF, O’Reilly L et al (2001) Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: Identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68:1408–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften e.v. (2010) Diagnostik und Therapieansatze bei Mitochondriopathien im Kindes- und Jugendalter AWMF-Leitlinien-Register, Bd. 027/016, Entwicklungsstufe 2. AWMF, Düsseldorf (http://www.awmf.org/leitlinien/detail/ll/027-016.html. Zugegriffen 02. Februar 2013)

    Google Scholar 

  • den Boer ME, Wanders RJ, Morris AA et al (2002) Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: Clinical presentation and follow-up of 50 patients. Pediatrics 109:99–104

    Article  Google Scholar 

  • Bonnet D, Martin D, De Pascale L et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100:2248–2253

    Article  CAS  PubMed  Google Scholar 

  • Clayton PT, Eaton S, Aynsley-Green A et al (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108:457–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47:64–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corr PB, Creer MH, Yamada KA et al (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83:927–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiMauro S (2011) A history of mitochondrial diseases. J Inherit Metab Dis 34:261–276

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta 1792:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen AL et al (2006) Tissue specific distribution of the 3243A→G mtDNA mutation. J Med Genet 43:671–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gillingham MB, Weleber RG, Neuringer M et al (2005) Effect of optimal dietary therapy upon visual function in children with long-chain 3-hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Mol Genet Metab 86:124–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graff C, Clayton DA, Larsson NG (1999) Mitochondrial medicine-recent advances. J Intern Med 246:11–23

    Article  CAS  PubMed  Google Scholar 

  • Haack TB, Haberberger B, Frisch EM et al (2012) Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J Med Genet 49:277–283

    Article  CAS  PubMed  Google Scholar 

  • Hempel M, Haack TB, Prokisch H (2011) Next generation sequencing. Monatsschr Kinderheilk 159:827–833

    Article  Google Scholar 

  • Hoffmann L, Haussmann U, Mueller M et al (2011) VLCAD enzyme activity determinations in newborns identified by screening: A valuable tool for risk assessment. J Inherit Metab Dis 35(2):269–277

    Article  PubMed  Google Scholar 

  • van de Kamp JM, Mancini GMS, Pouwels PJW et al (2011) Clinical features and X-inactivation in females heterozygous for creatine transporter defect. Clin Genet 79:264–272

    Article  PubMed  Google Scholar 

  • Klepper J, Leiendecker B, Bredahl R et al (2002) Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 25:449–460

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Akita Y, Nishioka J et al (2005) L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 64:710–712

    Article  CAS  PubMed  Google Scholar 

  • Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141

    Article  CAS  PubMed  Google Scholar 

  • Luft R (1995) The development of mitochondrial medicine. Biochim Biophys Acta 1271:1–6

    Article  CAS  PubMed  Google Scholar 

  • van Maldegem BT, Duran M, Wanders RJ et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296:943–952

    Article  PubMed  Google Scholar 

  • Mayr JA, Freisinger P, Schlachter K et al (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Human Genet 89:806–812

    Article  CAS  Google Scholar 

  • Olsen RK, Olpin SE, Andresen BS et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130:2045–2054

    Article  PubMed  Google Scholar 

  • Primassin S, Ter Veld F, Mayatepek E et al (2008) Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res 63:632–637

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75:97–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders – past, present and future. Biochim Biophys Acta 1659:115–120

    Article  CAS  PubMed  Google Scholar 

  • Schulze A (2004) Angeborene Störungen des Kreatinstoffwechsels (Kreatinmangelsyndrome). In: Hoffmann G, Grau AJ (Hrsg) Stoffwechselerkrankungen in der Neurologie. Thieme, Stuttgart, S 102–128

    Google Scholar 

  • Schulze A, Hoffmann GF, Bachert P et al (2006) Successful pre-symptomatic diagnosis and treatment from birth in GAMT deficiency. Neurology 67:719–721

    Article  CAS  PubMed  Google Scholar 

  • Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912

    Article  PubMed  Google Scholar 

  • Sperl W, Prokisch H, Karall D, Mayr JA, Freisinger P (2011) Mitochondriopathien, ein Update. Monatsschr Kinderheilk 9:848–854

    Article  Google Scholar 

  • Spiekerkoetter U et al (2003) Cardiomyopathy and pericardial effusion in infancy point to a fatty acid β-oxidation defect after exclusion of an underlying infection. Pediatr Cardiol 24:295–297

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Khuchua Z, Yue Z et al (2004) General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res 55:190–196

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Lindner M, Santer R et al (2009) Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 32:498–505

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Haussmann U, Mueller M et al (2010) Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: The value of second-tier enzyme testing. J Pediatr 157:668–673

    Article  CAS  PubMed  Google Scholar 

  • Stickler DE, Valenstein E, Neiberger RE et al (2006) Peripheral neuropathy in genetic mitochondrial diseases. Pediatr Neurol 34:127–131

    Article  PubMed  Google Scholar 

  • Taroni F, Verderio E, Dworzak F et al (1993) Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet 4:314–320

    Article  CAS  PubMed  Google Scholar 

  • Tyni T, Kivela T, Lappi M et al (1998) Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: A new type of hereditary metabolic chorioretinopathy. Ophthalmology 105:810–824

    Article  CAS  PubMed  Google Scholar 

  • Van Hove JL, Grunewald S, Jaeken J et al (2003) D,L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet 361:1433–1435

    Article  PubMed  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech Di 5:297–348

    Article  CAS  Google Scholar 

  • Wanders RJ, Ruiter JP, Ijlst L et al (2010) The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis 33(5):479–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wenz T, Williams SL, Bacman SR et al (2010) Emerging therapeutic approaches to mitochondrial diseases. Development Disab Res Rev 16:219–229

    Article  Google Scholar 

  • Wilcken B, Leung KC, Hammond J et al (1993) Pregnancy and fetal long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency. Lancet 341:407–408

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B, Haas M, Joy P et al (2007) Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: A cohort study. Lancet 369:37–42

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B (2010) Fatty acid oxidation disorders: Outcome and long-term prognosis. J Inherit Metab Dis 33:501–506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spiekerkötter, U., Sperl, W., Freisinger, P., Hoffmann, G.F. (2014). Störungen des Energiestoffwechsels. In: Hoffmann, G., Lentze, M., Spranger, J., Zepp, F. (eds) Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41866-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41866-2_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41865-5

  • Online ISBN: 978-3-642-41866-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics