Skip to main content

On the Structural Simplification, Compact and Light Design of a Vehicle Suspension, Achieved by Using a Colloidal Cylinder with a Dual Function of Absorber and Compression-Spring

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 198))

Abstract

Classical suspension (oil damper mounted in parallel with compression helical spring) is replaced by a colloidal suspension, in which case the spring can be omitted. Hence, structural simplification, accompanied by a compact and lighter design can be achieved. Oil is replaced by an ecological mixture of water and water-repellent nanoporous particles of silica (artificial sand). Travel tests using a V8 4.3L auto vehicle equipped with classical and colloidal suspensions were performed. Ride comfort (ISO 2631 method) was evaluated during travel (speed: 5–40 km/h) on a normal road with an asphalt step (height: 37 mm; width: 405 mm), for various values of the tire inflation pressure (150–250 kPa). On normal road without step the travel speed was increased up to 80 km/h. Acceleration at seat, seat-back, and feet surfaces was processed using the commercially available DEICY system for ride comfort evaluation. Spring omission, accompanied by 60 % reduction of the outer diameter, and 30 % reduction of the mass was achieved both for the frontal and rear colloidal suspensions. Results concerning the ride comfort were validated in the case of classical suspensions. Relationship between the travel speed of the vehicle and level of vibration perception was obtained for various values of the tire inflation pressure. Ride comfort decreased at augmentation of the travel speed and the tire inflation pressure. Since the colloidal spring constant was 6 times larger than the constant of the compression helical spring, colloidal suspension provided 1 rank lower ride comfort than the classical suspension. Pitching and rolling movements were not considered during the estimation of the ride comfort. Relation between the lateral acceleration and the rolling attitude angle was experimentally determined. Ride comfort results were explained by taking into account the vehicle behaviour during frontal, rear and superimposed impact excitations, in correlation with the variation against travel speed of the frequency weighting proposed by the ISO 2631. Although the colloidal suspension was found to provide inferior ride comfort than the classical suspension, results obtained so far are encouraging since better performances are to be expected by softening the colloidal spring, and by redesigning the suspension including the stabilizers.

F2012-G01-006

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eroshenko VA, Piatiletov I, Coiffard L, Stoudenets V (2007) A new paradigm of mechanical energy dissipation: experimental investigation and effectiveness of a novel car damper. Automobile Eng 221:301–312

    Article  Google Scholar 

  2. Suciu CV, Iwatsubo T, Deki S (2003) Investigation of a colloidal damper. Colloid Interface Sci 259:62–80

    Article  Google Scholar 

  3. Suciu CV, Iwatsubo T, Deki S (2004) Novel principle of mechanical energy dissipation. part 1: static performances of colloidal damper. JSME Int C47:180–188

    Article  Google Scholar 

  4. Suciu CV, Iwatsubo T (2004) Novel principle of mechanical energy dissipation. part 2: dynamic performances of colloidal damper. JSME Int C47:189–198

    Article  Google Scholar 

  5. Iwatsubo T, Suciu CV, Ikenaga M, Yaguchi K (2007) Dynamic characteristics of a new damping element based on surface extension principle in nanoporous. Sound Vib 308:579–590

    Article  Google Scholar 

  6. Iwatsubo T, Washio K, Yano H, Miyazaki M (2008) Experimental study of a colloidal damper to practical application. Sys Des Dyn 2:1160–1169

    Google Scholar 

  7. Suciu CV, Yaguchi K (2009) Endurance tests on a colloidal damper destined to vehicle suspension. Exp Mech 49:383–393

    Article  Google Scholar 

  8. Suciu CV, Tani S, Yaguchi K (2010) On the fatigue fracture at adsorption/desorption of water in/from liquid-repellent nanoporous silica. Acta Mech 214:195–203

    Article  MATH  Google Scholar 

  9. Buma S. Investigation on the Possibility of Employing as Vehicle Suspension a Colloidal Cylinder, which Puts the Surface Tension to Practical Use [J]. Trans JSAE, 2012, 43, pp. 723-728 (in Japanese)

    Google Scholar 

  10. Suciu CV, Tani S, Miyoshi K (2010) experimental study on the thermal characteristics of a colloidal damper. Trans JSME C76: 1043–1049 (in Japanese). [J]. System Design and Dynamics, 2010, 4: 899–913

    Google Scholar 

  11. Suciu CV, Kimura Y (2012) Experimental study on the forced heating and natural cooling of a colloidal damper. Trans JSME C78: 1338–1351 (in Japanese)

    Google Scholar 

  12. Suciu CV, Tobiishi T (2010) Comfortableness evaluation of an auto vehicle equipped with colloidal suspensions. Trans JSME C78: 1378–1387 (in Japanese)

    Google Scholar 

  13. ISO 2631 (1997) Mechanical vibration and shock: evaluation of human exposure to whole-body vibration. Paris: International Organization for Standardization

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu Valentin Suciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suciu, C.V., Buma, S. (2013). On the Structural Simplification, Compact and Light Design of a Vehicle Suspension, Achieved by Using a Colloidal Cylinder with a Dual Function of Absorber and Compression-Spring. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33795-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33795-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33794-9

  • Online ISBN: 978-3-642-33795-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics