Skip to main content
Log in

Endurance Tests on a Colloidal Damper Destined to Vehicle Suspension

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Endurance tests on a colloidal damper destined to vehicle suspension are performed. Such absorber represents an ecological application of nano-damping; it employs the hysteresis which occurs when water is forced to penetrate and then naturally exudes from a nanoporous silica gel matrix, modified to become liquid-repellent. Damping performances decrease at the increasing of the number of working cycles, partially since the silica gel grains that undergo gradual fatigue fracture are able to escape at the packing used to seal the test chamber, and partially due to the fatigue fracture alone, which is accompanied by an enhancement of the hydrophilic silanol groups on the silica gel surface and a pore size redistribution. In order to augment damper’s life, silica gel is introduced inside of a tank that is separated by a filter from the main cylinder, in which only water is supplied. One discusses the influence of filtration on the colloidal damper performances and the variation of damper’s life versus the ratio of filter pore’s diameter to the mean size of the silica gel particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Cycles, [−]; Damping coefficient, \({E \mathord{\left/ {\vphantom {E {\left( {2\pi ^2 fS^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\pi ^2 fS^2 } \right)}}\) (N·s/m)

c f :

Contribution of the filter to the damping coefficient (N·s/m)

D :

Piston diameter (m)

E :

Dissipated energy (J)

E f :

Contribution of the filter to the dissipated energy (J)

f&f n :

Excitation and resonance frequencies (Hz)

h :

Length of the filter orifices (m)

M&M 0 :

Mass and initial mass of silica gel (g)

N&N cr :

Number and critical number of working cycles (c)

N max,min :

Maximum, minimum number of working cycles (c)

p&p c,d :

Pressure & compression, decompression pressures (Pa)

p f :

Pressurization to assure water passage through the filter (Pa)

r&R :

Radius of the silica gel nanopore and micro-particle (m)

R 0 :

Radius of the filter orifices (m)

S&S max :

Piston stroke and maximum piston stroke (m)

V :

Specific pore volume (ml/g)

α&β :

Exponents connected to the effect of fatigue fracture and colloid leakage (−)

δ :

Filter porosity (−)

μ :

Dynamic viscosity (Pa·s)

References

  1. Erochenko AV (1996) Heterogeneous structure for accumulation or dissipation of energy. Process to use it and associated devices. Int. Patent. No. WO 96/18040:1–20.

    Google Scholar 

  2. Fadeev AY, Eroshenko VA (1997) Study of penetration of water into hydrophobized silicas. J Colloid Interface Sci 187:275–282. doi:10.1006/jcis.1996.4495.

    Article  Google Scholar 

  3. Eroshenko AV (2001) Damper with high dissipating power. Int. Patent, No. WO 01/55616 A1:1–33.

  4. Eroshenko VA, Regis RC, Soulard M, Paterin J (2001) Energetics: a new field of applications for hydrophobic zeolites. J Am Chem Soc 123:8129–8130. doi:10.1021/ja011011a.

    Article  Google Scholar 

  5. Coiffard L, Eroshenko VA, Grolier JPE (2005) Thermo-mechanics of the variation of interfaces in heterogeneous lyophobic systems. AIChE J 51:1246–1257. doi:10.1002/aic.10371.

    Article  Google Scholar 

  6. Coiffard L, Eroshenko VA (2006) Temperature effect on water intrusion/expulsion in grafted silica gels. J Colloid Interface Sci 300:304–309. doi:10.1016/j.jcis.2006.03.054.

    Article  Google Scholar 

  7. Eroshenko VA (2007) A new paradigm of mechanical energy dissipation. Part 1: theoretical aspects and practical solutions. Proc. Inst. Mech. Eng., Part D–J. Automobile Eng 221:285–300. doi:10.1243/09544070D01505.

    Article  Google Scholar 

  8. Trzpit M, Soulard M, Patarin J (2007) The pure silica chabazite: a high volume molecular spring at low pressure for energy storage. Chem Lett 36:980–981. doi:10.1246/cl.2007.980.

    Article  Google Scholar 

  9. Suciu CV, Iwatsubo T, Deki S (2003) Investigation of a colloidal damper. J Colloid Interface Sci 259:62–80. doi:10.1016/S0021-9797(02)00076-0.

    Article  Google Scholar 

  10. Suciu CV, Iwatsubo T, Deki S (2004) Novel principle of mechanical energy dissipation: part 1–static performances of colloidal damper. JSME Int J C47:180–188. doi:10.1299/jsmec.47.180.

    Google Scholar 

  11. Suciu CV, Iwatsubo T (2004) Novel principle of mechanical energy dissipation: part 2—dynamic performances of colloidal damper. JSME Int J C47:189–198. doi:10.1299/jsmec.47.189.

    Google Scholar 

  12. Suciu CV, Iwatsubo T, Ikenaga M, Yaguchi K (2004) Effect of the structure of the hydrophobized mesoporous silica gel on the colloidal damper hysteresis. Proc. Int. Conf. on Noise and Vibration Eng., September, pp 665–679

  13. Suciu CV, Iwatsubo T, Yaguchi K, Ikenaga M (2005) Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel. J Colloid Interface Sci 283:196–214. doi:10.1016/j.jcis.2004.08.034.

    Article  Google Scholar 

  14. Suciu CV (2006) Experimental investigation of the dynamic performances and durability of a colloidal damper. Proc. Int. Conf. on Modal Analysis, Noise and Vibration Eng., September, pp 1153–1164

  15. Suciu CV (2007) Molecular dynamics study of wetting on brushlike nanopillar and wavelike nanorough surfaces. ASME Proc. Int. Conf. on Integration and Commercialization of Micro and Nanosystems, January, CD-ROM:1–8

  16. Iwatsubo T, Suciu CV, Ikenaga M, Yaguchi K (2007) Dynamic characteristics of a new damping element based on surface extension principle in nanopores. J Sound Vib 308:579–590. doi:10.1016/j.jsv.2007.06.012.

    Article  Google Scholar 

  17. Lau KSK, Bico J, Teo K, Chhowalla M, Milne W, McKinley GH et al (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705. doi:10.1021/nl034704t.

    Article  Google Scholar 

  18. Agrawal A, Park J, Ryu DY, Hammond PT, Russell TP, McKinley GH (2005) Controllling the location and spatial extent of nanobubbles using hydrophobically nanopatterend surfaces. Nano Lett 5:1751–1756. doi:10.1021/nl051103o.

    Article  Google Scholar 

  19. Callies M, Chen Y, Marty F, Pepin A, Quere D (2005) Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic Eng 78-79:100–105. doi:10.1016/j.mee.2004.12.093.

    Article  Google Scholar 

  20. Qiao Y (2007) Use of chemical admixtures as promoters, recovery agents, and viscosity adjustors in nanoporous energy absorption systems, Int. Patent, No. WO 2007/044030 A2:1–28.

  21. Qiao Y (2007) Nanoporous materials for use in the conversion of mechanical energy and/or thermal energy into electrical energy, Int. Patent, No. WO 2007/022456 A2:1–18.

  22. Batchelor GK (1967) An introduction to fluid dynamics. University Press, Cambridge, p 211..

    MATH  Google Scholar 

  23. Deshmukh SS (2007) Development, characterization and applications of magneto-rheological fluid based “smart” materials on the macro-to-micro scale. Ph. D. Thesis, Massachusetts Institute of Technology, p 51.

  24. Eastman DE (2004) Design of semi-active variable impedance materials using field-responsive fluids. S.M. Thesis, Massachusetts Institute of Technology, p 32.

  25. Bettin G (2005) Energy absorption of reticulated foams filled with shear-thickening silica suspensions. S.M. Thesis, Massachusetts Institute of Technology, p 45.

  26. Harris CM, Crede CE (1968) Shock and vibration handbook. McGraw-Hill, New York, p 96.

    Google Scholar 

  27. Chironis NP (1961) Spring design and application. McGraw-Hill, New York, p 231.

    Google Scholar 

  28. Komamura S (2005) Automotive suspension, 2nd edn. Kayaba Tech, Tokyo, p 25.

    Google Scholar 

  29. Jha SK (1976) Characteristics and sources of noise and vibration and their control in motor cars. J Sound Vib 47:543–558. doi:10.1016/0022-460X(76)90881-6.

    Article  Google Scholar 

  30. Balandin DV, Bolotnik NN, Pilkey WD (2001) Optimal protection from impact, shock, and vibration, Gordon and Breach, Amsterdam, p 302.

    Google Scholar 

  31. Bosch R (2004) Bosch automotive handbook, 6th edn. Bentley, Cambridge, p 74.

    Google Scholar 

  32. Bastow D, Howard G, Whitehead JP (2004) Car suspension and handling, 4th edn. SAE International, Warrendale, p 29.

    Google Scholar 

  33. International Organization for Standardization ISO 2631-1 (1997) Mech. vibration and shock evaluation of human exposure to whole-body vibration. Part 1: general requirements, p 19.

  34. Heath AN (1987) Application of the isotropic road roughness assumption. J Sound Vib 115:131–144. doi:10.1016/0022-460X(87)90495-0.

    Article  Google Scholar 

  35. Dodds CJ, Robson JD (1973) Description of road surface roughness. J Sound Vib 31:175–183.

    Article  MATH  Google Scholar 

  36. Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. Wiley, New York, p 85.

    Google Scholar 

  37. Stainton C, Liang W, Kendall K (1998) Formation and fracture of adhesive bonds between colloidal spheres. Eng Fracture Mech 61:83–91. doi:10.1016/S0013-7944(98)00056-3.

    Article  Google Scholar 

  38. Springuel-Huet MA, Bonardet JL, Gedeon A, Yue Y, Romannikov VN, Fraissard J (2001) Mechanical properties of mesoporous silicas and alumina-silicas MCM-41 and SBA-15 studied by N2 adsorption and 129Xe NMR. Microporous Mesoporous Mater 44–45:775–784. doi:10.1016/S1387-1811(01)00260-8.

    Article  Google Scholar 

  39. Louat NP (1974) On the theory of normal grain growth. Acta Metallurgica 22:721–724. doi:10.1016/0001-6160(74)90081-9.

    Article  Google Scholar 

  40. Chytil S, Haugland L, Blekkan EA (2008) On the mechanical stability of mesoporous silica SBA-15. Microporous Mesoporous Mater 111:134–142. doi:10.1016/j.micromeso.2007.07.020

    Google Scholar 

  41. Suciu CV (2008) Energy dissipation during liquid adsorption/desorption in/from liquid repellent nanochannels. ASME ICNMM2008-62040:1-10.

Download references

Acknowledgements

Supports from the Ministry of Education and the Electronic Research Laboratory, Fukuoka Institute of Technology, as well as the assistance of Messrs. K. Shibata, K. Ajisaka and K. Itsuwa during the endurance tests performed on the proposed colloidal damper are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Suciu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suciu, C.V., Yaguchi, K. Endurance Tests on a Colloidal Damper Destined to Vehicle Suspension. Exp Mech 49, 383–393 (2009). https://doi.org/10.1007/s11340-008-9163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9163-z

Keywords

Navigation