Skip to main content

Yeast as a Window into Changes in Genome Complexity Due to Polyploidization

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

Due to the long history of genetic analyses in yeasts and their experimental tractability, the yeast genome duplication provides important perspectives on the genome and population-level processes that follow whole-genome duplication (WGD). We discuss the history of the discovery of the Saccharomyces cerevisiae WGD, with special emphasis on the role of comparative genomics in its analysis. We then explore models of the WGD shaped population and species divergence, both at a gene level (e.g., Dobzhansky-Muller incompatibility) and from the perspective of recent work on secondary allopolyploidy in Saccharomyces pastorianus. Finally, we explore the selective forces that act on the WGD-produced paralogs and shape their patterns of loss and retention. In addition to discussing the dosage balance hypothesis as it applies to the yeast WGD, we explore the role of the WGD in shaping several complex metabolic and regulatory phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amoutzias GD, He Y, Gordon J, Mossialos D, Oliver SG, Van de Peer Y (2010) Posttranslational regulation impacts the fate of duplicated genes. Proc Natl acad sci U.S.A 107:2967–2971

    Article  PubMed  CAS  Google Scholar 

  • Anderson JB, Funt J, Thompson DA et al (2010) Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations. Curr Biol 20:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Aury JM, Jaillon O, Duret L et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis of fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558

    Article  PubMed  CAS  Google Scholar 

  • Boles E, Schulte F, Miosga T, Freidel K, Schlüter E, Zimmermann FK, Hollenberg CP, Heinisch JJ (1997) Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1-6-biphosphate. J Bacteriol 179:2987–2993

    PubMed  CAS  Google Scholar 

  • Byrne KP, Wolfe KH (2005) The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Byrne KP, Wolfe KH (2007) Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics 175:1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Casaregola S, Nguyen HV, Lapathitis G, Kotyk A, Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51:1607–1618

    PubMed  CAS  Google Scholar 

  • Chou J-Y, Hung Y-S, Lin K-H, Lee H-Y, Leu J-Y (2010) Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8:e1000432

    Article  PubMed  Google Scholar 

  • Coissac E, Maillier E, Netter P (1997) A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. Mol Biol Evol 14:1062–1074

    Article  PubMed  CAS  Google Scholar 

  • Conant GC (2010) Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast. Proc R Soc B 277:869–876

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2006a) Functional partitioning of yeast co-expression networks after genome duplication. PLoS Biol 4:e109

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2006b) Functional partitioning of yeast co-expression networks after genome duplication. PLoS Biol 4:e109

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3:129

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008a) Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics 179:1681–1692

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008b) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  PubMed  CAS  Google Scholar 

  • Deluna A, Vetsigian K, Shoresh N, Hegreness M, Colon-Gonzalez M, Chao S, Kishony R (2008) Exposing the fitness contribution of duplicated genes. Nat Genet 40(5):676–681

    Article  PubMed  CAS  Google Scholar 

  • Dequin S, Casaregola S (2011) The genomes of fermentative Saccharomyces. CR Biol 334:687–693

    Article  CAS  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    PubMed  CAS  Google Scholar 

  • Dettman JR, Sirjusingh C, Kohn LM, Anderson JB (2007) Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:585–588

    Article  PubMed  CAS  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S et al (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Evangelisti AM, Conant GC (2010) Nonrandom survival of gene conversions among yeast ribosomal proteins duplicated through genome doubling. Genome Biol Evol 2:826–834

    Article  PubMed  Google Scholar 

  • Fares MA, Byrne KP, Wolfe KH (2006) Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species. Mol Biol Evol 23:245–253

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick D, Logue M, Stajich J, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    Article  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  PubMed  CAS  Google Scholar 

  • Friedman R, Hughes AL (2001) Gene duplication and the structure of eukaryotic genomes. Genome Res 11:373–381

    Article  PubMed  CAS  Google Scholar 

  • Furlong RF, Holland PWH (2002) Were vertebrates octoploid? Philos Trans R Soc Lond B 357:531–544

    Article  CAS  Google Scholar 

  • Fusco D, Grassi L, Bassetti B, Caselle M, Lagomarsino MC (2010) Ordered structure of the transcription network inherited from the yeast whole-genome duplication. BMC Syst Biol 4:77

    Article  PubMed  Google Scholar 

  • Gao LZ, Innan H (2004) Very low gene duplicaiton rate in the yeast genome. Science 306:1367–1370

    Article  PubMed  CAS  Google Scholar 

  • Geladé R, Van De Velde S, Van Dijck P, Thevelein JM (2003) Multi-level response of the yeast genome to glucose. Genome Biol 4:233

    Article  PubMed  Google Scholar 

  • Goffeau A, Barrell B, Russey H et al (1996) Life with 6000 genes. Science 274:562–567

    Article  Google Scholar 

  • Gordon JL, Byrne KP, Wolfe KH (2009) Additions, losses and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 5:e1000485

    Article  PubMed  Google Scholar 

  • Gordon JL, Byrne KP, Wolfe KH (2011) Mechanisms of chromosome number evolution in yeast. PLoS Genet 7:e1002190

    Article  PubMed  CAS  Google Scholar 

  • Gordon JL, Wolfe KH (2008) Recent allopolyploid origin of Zygosaccharomyces rouxii strain ATCC 42981. Yeast 25:449–456

    Article  PubMed  CAS  Google Scholar 

  • Greig D (2008) Reproductive isolation in Saccharomyces. Heredity 102:39–44

    Article  PubMed  Google Scholar 

  • Guan Y, Dunham MJ, Troyanskaya OG (2007) Functional analysis of gene duplications in Saccharomyces cerevisiae. Genetics 175:933–943

    Article  PubMed  CAS  Google Scholar 

  • Hakes L, Pinney JW, Lovell SC, Oliver SG, Robertson DL (2007) All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biol 8:R209

    Article  PubMed  Google Scholar 

  • Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1999) Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol 48:565–576

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR, Roberts CJ, Dai H et al (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    Article  PubMed  CAS  Google Scholar 

  • Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, Berman J, Barkai N (2005) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–940

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • James SA, Bond CJ, Stratford M, Roberts IN (2005) Molecular evidence for the existence of natural hybrids in the genus Zygosaccharomyces. FEMS Yeast Res 5:747–755

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Kim J-H (2005) Glucose as a hormone: Receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:247–252

    Article  PubMed  CAS  Google Scholar 

  • Kao KC, Schwartz K, Sherlock G (2010) A genome-wide analysis reveals no nuclear Dobzhansky-Muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities. PLoS Genet 6:e1001038

    Article  PubMed  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  PubMed  CAS  Google Scholar 

  • Kielland-Brandt MC, Nilsson-Tillgren T, Gjermansen C, Holmberg S, Pedersen MB (1995) Genetics of brewing yeasts. In: Rose AH, Wheals AE, Harrison JS (eds) The Yeasts, vol 6, 2nd edn. Academic, London, pp 223–254

    Google Scholar 

  • Kim S-H, Yi SV (2006) Correlated asymmetry of sequence and functional divergence between duplicate proteins of Saccharomyces cerevisiae. Mol Biol Evol 23:1068–1075

    Article  PubMed  Google Scholar 

  • Kim T-Y, Ha CW, Huh W-K (2009) Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae. Mol Cells 27:539–546

    Article  PubMed  CAS  Google Scholar 

  • Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557–571

    Article  PubMed  CAS  Google Scholar 

  • Koszul R, Caburet S, Dujon B, Fischer G (2004) Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 23:234–243

    Article  PubMed  CAS  Google Scholar 

  • Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman C, Robnett C (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  PubMed  CAS  Google Scholar 

  • Lalo D, Stettler S, Mariotte S, Slominski PP, Thuriaux P (1993) Two yeast chromosomes are related by a fossil duplication of their centromeric regions. C R Acad Sci 316:367–373

    CAS  Google Scholar 

  • Lee H-Y, Chou J-Y, Cheong L, Chang N-H, Yang S-Y, Leu J-Y (2008) Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Nat Acad Sci 108:14539–14544

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Durrens P, Malpertuy A et al (2000a) Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett 487:122–133

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Malpertuy A, NeuvÈglise C et al (2000b) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487:101–112

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Maclean CJ, Greig D (2011) Reciprocal gene loss following experimental whole-genome duplication causes reproductive isolation in yeast. Evolution 65:932–945

    Article  PubMed  Google Scholar 

  • MacLean RC, Gudelj I (2006) Resource competition and social conflict in experimental populations of yeast. Nature 441:498–501

    Article  PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer. Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Nat Acad Sci U S A 102:5454–5459

    Article  CAS  Google Scholar 

  • Martini AV, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35:508–511

    Article  CAS  Google Scholar 

  • Melnick L, Sherman F (1993) The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J Mol Biol 233:372–388

    Article  PubMed  CAS  Google Scholar 

  • Merico A, Sulo P, PiÅ¡kur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989

    Article  PubMed  CAS  Google Scholar 

  • Mewes H, Albermann K, Bähr M et al (1997) Overview of the yeast genome. Nature 387:7–65

    Article  PubMed  Google Scholar 

  • Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12:2147–2170

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Oliver SG (1996) From DNA sequence to biological function. Nature 379:597–600

    Article  PubMed  CAS  Google Scholar 

  • Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573

    Article  PubMed  Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet 19:417–422

    Article  PubMed  CAS  Google Scholar 

  • Petes T, Hill C (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22:147–168

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Schuster S (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem Sci 30:20–25

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  PubMed  CAS  Google Scholar 

  • Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos Trans R Soc Lond B 365:557–566

    Article  CAS  Google Scholar 

  • Piskur J (2001) Origin of the duplicated regions in the yeast genomes. Trends Genet 17:302–303

    Article  PubMed  CAS  Google Scholar 

  • PiÅ¡kur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22:183–186

    Article  PubMed  Google Scholar 

  • Rainieri S, Kodama Y, Kaneko Y, Mikata K, Nakao Y, Ashikari T (2006) Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl Environ Microbiol 72:3968–3974

    Article  PubMed  CAS  Google Scholar 

  • Rolland T, Dujon B (2011) Yeasty clocks: dating genomic changes in yeasts. CR Biol 334:620–628

    Article  CAS  Google Scholar 

  • Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345

    Article  PubMed  CAS  Google Scholar 

  • Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT (2011) The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto genus. G3: Genes, Genomes, Genetics 1:11–25

    CAS  Google Scholar 

  • Seoighe C, Wolfe KH (1999) Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2:548–554

    Article  PubMed  CAS  Google Scholar 

  • Smith M (1987) Molecular evolution of the Saccharomyces cerevisiae histone gene loci. J Mol Evol 24:252–259

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Van de Peer Y, Fawcett J, Proost S, Sterk L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  Google Scholar 

  • van Hoek MJ, Hogeweg P (2009) Metabolic adaptation after whole genome duplication. Mol Biol Evol 26:2441–2453

    Article  PubMed  Google Scholar 

  • van Hoof A (2005a) Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication. Genetics 171:1455–1461

    Article  PubMed  Google Scholar 

  • van Hoof A (2005b) Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication. Genetics 171:1455–1461

    Article  PubMed  Google Scholar 

  • Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61

    Article  PubMed  CAS  Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526

    Article  Google Scholar 

  • Wolfe KH (2000) Robustness-it’s not where you think it is. Nat Genet 25:3–4

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields D (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  • Xu M, He X (2011) Genetic incompatibility dampens hybrid fertility more than hybrid viability: yeast as a case study. PLoS ONE 6:e18341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Michaël Bekaert, Patrick Edger, and Chris Pires for helpful discussions. This work was supported by the National Library of Medicine Biomedical and Health Informatics Training Fellowship [LM007089-19] (CMH) and the Reproductive Biology Group of the Food for the twenty-first century program at the University of Missouri (GCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin C. Conant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hudson, C.M., Conant, G.C. (2012). Yeast as a Window into Changes in Genome Complexity Due to Polyploidization. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_15

Download citation

Publish with us

Policies and ethics