Skip to main content
Log in

Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae

  • Published:
Molecules and Cells

Abstract

In Saccharomyces cerevisiae, ribosomal protein L7, one of the ∼46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between Rpl7a and Rpl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its sub-cellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knock-out mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsterdam, A., Sadler, K.C., Lai, K., Farrington, S., Bronson, R.T., Lees, J.A., and Hopkins, N. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, E139.

    Article  PubMed  Google Scholar 

  • Degenhardt, R.F., and Bonham-Smith, P.C. (2008). Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are desperately required for normal development. Plant Physiol. 147, 128–142.

    Article  CAS  PubMed  Google Scholar 

  • DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  CAS  PubMed  Google Scholar 

  • Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet 21, 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Dresios, J., Panopoulos, P., and Synetos, D. (2006). Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol. Microbiol. 59, 1651–1663.

    Article  CAS  PubMed  Google Scholar 

  • Enerly, E., Larsson, J., and Lambertsson, A. (2003). Silencing the Drosophila ribosomal protein L14 gene using targeted RNA interference causes distinct somatic anomalies. Gene 320, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Enyenihi, A.H., and Saunders, W.S. (2003). Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163, 47–54.

    CAS  PubMed  Google Scholar 

  • Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.

    CAS  PubMed  Google Scholar 

  • Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O’shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737–741.

    Article  CAS  PubMed  Google Scholar 

  • Ghazal, G., Ge, D., Gervais-Bird, J., Gagnon, J., and Abou Elela, S. (2005). Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals. Mol. Cell. Biol. 25, 2981–2994.

    Article  CAS  PubMed  Google Scholar 

  • Haarer, B., Viggiano, S., Hibbs, M.A., Troyanskaya, O.G., and Amberg, D.C. (2007). Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev. 21, 148–159.

    Article  CAS  PubMed  Google Scholar 

  • Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Komili, S., Farny, N.G., Roth, F.P., and Silver, P.A. (2007). Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557–571.

    Article  CAS  PubMed  Google Scholar 

  • Lam, Y.W., Lamond, A.I., Mann, M., and Andersen, J.S. (2007). Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299–307.

    CAS  PubMed  Google Scholar 

  • Lohrum, M.A., Ludwig, R.L., Kubbutat, M.H., Hanlon, M., and Vousden, K.H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Mazumder, B., Sampath, P., Seshadri, V., Maitra, R.K., DiCorleto, P.E., and Fox, P.L. (2003). Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187–198.

    Article  CAS  PubMed  Google Scholar 

  • Mizuta, K., Hashimoto, T., and Otaka, E. (1992). Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7. Nucleic Acids Res. 20, 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  • Mumberg, D., Muller, R., and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Ni, L., and Snyder, M. (2001). A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2147–2170.

    CAS  PubMed  Google Scholar 

  • Planta, R.J., and Mager, W.H. (1998). The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Rotenberg, M.O., Moritz, M., and Woolford, J.L. Jr. (1988). Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev. 2, 160–172.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, F. (2002). Getting started with yeast. Methods Enzymol. 350, 3–41.

    Article  CAS  PubMed  Google Scholar 

  • Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    CAS  PubMed  Google Scholar 

  • Sung, M.K., and Huh, W.K. (2007). Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast 24, 767–775.

    Article  CAS  PubMed  Google Scholar 

  • Sung, M.K., Ha, C.W., and Huh, W.K. (2008). A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae. Yeast 25, 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Tate, W.P., and Poole, E.S. (2004). The ribosome: lifting the veil from a fascinating organelle. Bioessays 26, 582–588.

    Article  CAS  PubMed  Google Scholar 

  • Venema, J., and Tollervey, D. (1999). Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33, 261–311.

    Article  CAS  PubMed  Google Scholar 

  • Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Wool, I.G. (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21, 164–165.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Ki Huh.

About this article

Cite this article

Kim, TY., Ha, C.W. & Huh, WK. Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae . Mol Cells 27, 539–546 (2009). https://doi.org/10.1007/s10059-009-0077-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0077-0

Keywords

Navigation