Skip to main content

Ongoing Clinical Trials in Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Myeloproliferative Neoplasms

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1015 Accesses

Abstract

There are many new drugs in clinical development for patients with classic Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs). JAK2 inhibitors, developed to target the JAK2 enzyme which is found mutated in the majority of patients with Ph-negative MPNs, lead to reduction in splenomegaly, improvement in systemic symptoms and quality of life in patients with myelofibrosis (MF), while in patients with polycythemia vera (PV) and essential thrombocythemia (ET) who are intolerant or resistant to hydroxyurea, they may control blood cell count(s) and signs and symptoms of the disease. Currently, there are three phase III trials underway to better determine the activity of JAK2 inhibitor ruxolitinib in patients with MF and PV, and a number of phase I/II studies with other JAK2 inhibitors for patients with MF. Pomalidomide is a derivative of thalidomide with activity in improving the anemia in patients with MF and is being studied in a phase III placebo-controlled study for possible approval. Other compounds in clinical studies are histone deacetylase inhibitors, mTOR inhibitor, TGF-β inhibitor, and bisphosphonates. It can be safely said that the field of Ph-negative MPNs have gone from neglect to prominence, with new drugs in late stage development at the moment. In this chapter, we review some of the ongoing clinical trials for patients with Ph-negative MPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab O, Pardanani A, Rampal R et al (2011) DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. doi:10.1038/leu.2011.82

  • Al-Shami A, Naccache PH (1999) Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. J Biol Chem 274:5333–5338

    Article  PubMed  CAS  Google Scholar 

  • Assous N, Foltz V, Fautrel B et al (2005) Bone involvement in myelofibrosis: effectiveness of bisphosphonates. Joint Bone Spine 72:591–592

    Article  PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Barosi G, Grossi A, Comotti B et al (2001) Safety and efficacy of thalidomide in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 114:78–83

    Article  PubMed  CAS  Google Scholar 

  • Barosi G, Bergamaschi G, Marchetti M et al (2007) JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 110:4030–4036

    Article  PubMed  CAS  Google Scholar 

  • Barosi G, Birgegard G, Finazzi G et al (2009) Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 113:4829–4833

    Article  PubMed  CAS  Google Scholar 

  • Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  • Begna K, Mesa RA, Pardanani A et al (2010) A phase-2 trial of low-dose pomalidomide in myelofibrosis with anemia [abstract]. Blood 116: Abstract 4109

    Google Scholar 

  • Begna KH, Mesa RA, Pardanani A et al (2011) A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia 25:301–304

    Article  PubMed  CAS  Google Scholar 

  • Bock O, Hoftmann J, Theophile K et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172:951–960

    Article  PubMed  CAS  Google Scholar 

  • Bouscary D, Pene F, Claessens YE et al (2003) Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101:3436–3443

    Article  PubMed  CAS  Google Scholar 

  • Castro-Malaspina H, Rabellino EM, Yen A et al (1981) Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 57:781–787

    PubMed  CAS  Google Scholar 

  • Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113:2895–2901

    Article  PubMed  CAS  Google Scholar 

  • Chagraoui H, Komura E, Tulliez M et al (2002) Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495–3503

    Article  PubMed  CAS  Google Scholar 

  • Chagraoui H, Tulliez M, Smayra T et al (2003) Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983–2989

    Article  PubMed  CAS  Google Scholar 

  • Chavassieux PM, Arlot ME, Reda C et al (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Ciurea SO, Merchant D, Mahmud N et al (2007) Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 110:986–993

    Article  PubMed  CAS  Google Scholar 

  • Corral LG, Haslett PA, Muller GW et al (1999) Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 163:380–386

    PubMed  CAS  Google Scholar 

  • Dawson MA, Bannister AJ, Gottgens B et al (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822

    Article  PubMed  CAS  Google Scholar 

  • DeAngelo DJ, Spencer A, Fischer T et al (2009) Activity of oral Panobinostat (LBH589) in patients with myelofibrosis [abstract]. Blood 114:Abstract 2898

    Google Scholar 

  • DeAngelo DJ, Tefferi A, Fiskus W et al (2010) A phase II trial of Panobinostat, an orally available deacetylase inhibitor (DACi), in patients with primary myelofibrosis (PMF), post essential thrombocythemia (ET), and post polycythemia vera (PV) myelofibrosis [abstract]. Blood 116:Abstract 630

    Google Scholar 

  • Diamond T, Smith A, Schnier R et al (2002) Syndrome of myelofibrosis and osteosclerosis: a series of case reports and review of the literature. Bone 30:498–501

    Article  PubMed  CAS  Google Scholar 

  • Dusa A, Mouton C, Pecquet C et al (2010) JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One 5:e11157

    Article  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  PubMed  CAS  Google Scholar 

  • Froom P, Elmalah I, Braester A et al (2002) Clodronate in myelofibrosis: a case report. Am J Med Sci 323:115–116

    Article  PubMed  Google Scholar 

  • Galustian C, Meyer B, Labarthe MC et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Gangat N, Caramazza D, Vaidya R et al (2010) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. doi:10.1200/JCO.2010.32.2446

  • Geron I, Abrahamsson AE, Barroga CF et al (2008) Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 13:321–330

    Article  PubMed  CAS  Google Scholar 

  • Grimwade LF, Happerfield L, Tristram C et al (2009) Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Br J Haematol 147:495–506

    Article  PubMed  CAS  Google Scholar 

  • Guerini V, Barbui V, Spinelli O et al (2008) The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 22:740–747

    Article  PubMed  CAS  Google Scholar 

  • Hedvat M, Huszar D, Herrmann A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  PubMed  CAS  Google Scholar 

  • Hexner EO, Serdikoff C, Jan M et al (2008) Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111:5663–5671

    Article  PubMed  CAS  Google Scholar 

  • Hexner E, Goldberg JD, Prchal JT et al (2009) A multicenter, open label phase I/II study of CEP701 (Lestaurtinib) in adults with myelofibrosis; a report on phase I: a study of the myeloproliferative disorders research consortium (MPD-RC) [abstract]. Blood 114:Abstract 754

    Google Scholar 

  • Incyte (2010) Incyte announces positive top-line results from COMFORT-I pivotal phase III trial of INCB18424 in myelofibrosis, a debilitating, life-threatening blood cancer. Press Release http://investor.incyte.com/phoenix.zhtml?c=69764&p=irol-newsArticle&ID=1509517&highlight=20December2010

  • Incyte (2011) Incyte’s ruxolitinib (INCB18424) meets primary endpoint in second phase III study. Press release http://investor.incyte.com/phoenix.zhtml?c=69764&p=irol-newsArticle&ID=1539173&highlight=15March2011

  • Jabbour E, Kantarjian H, Parikh SA et al (2009) Comparison of thalidomide and lenalidomide for the treatment of patients (pts) with myelofibrosis (MF) [abstract]. Blood 114:Abstract 2901

    Google Scholar 

  • James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  • Kacena MA, Shivdasani RA, Wilson K et al (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19:652–660

    Article  PubMed  CAS  Google Scholar 

  • Kacena MA, Gundberg CM, Horowitz MC (2006) A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39:978–984

    Article  PubMed  CAS  Google Scholar 

  • Kakumitsu H, Kamezaki K, Shimoda K et al (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29:761–769

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Katoh O, Hyodo H et al (1989) Transforming growth factor-beta regulates growth as well as collagen and fibronectin synthesis of human marrow fibroblasts. Br J Haematol 72:486–491

    Article  PubMed  CAS  Google Scholar 

  • Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  PubMed  CAS  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Kroger N, Holler E, Kobbe G et al (2009) Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 114:5264–5270

    Article  PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Lacout C, Pisani DF, Tulliez M et al (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:1652–1660

    Article  PubMed  CAS  Google Scholar 

  • Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Ravandi F, Wang ES et al (2011) Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117:3294–3301

    Article  PubMed  CAS  Google Scholar 

  • Lindauer K, Loerting T, Liedl KR et al (2001) Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 14:27–37

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Zhao X, Perna F et al (2011) JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19:283–294

    Article  PubMed  CAS  Google Scholar 

  • Lundberg LG, Lerner R, Sundelin P et al (2000) Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 157:15–19

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Zhao B, Walgren R et al (2010) Efficacy of LY2784544, a small molecule inhibitor selective for mutant JAK2 kinase, in JAK2 V617F-induced hematologic malignancy models [abstract]. Blood 116:Abstract 4087

    Google Scholar 

  • Marks P, Rifkind RA, Richon VM et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  • Martyre MC, Romquin N, Le Bousse-Kerdiles MC et al (1994) Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis. Br J Haematol 88:9–16

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas J, Wang X, Rodriguez A et al (2009) A phase I study of LBH589, a novel histone deacetylase inhibitor in patients with primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (post-PV/ET MF) [abstract]. Blood 114:Abstract 308

    Google Scholar 

  • Mesa RA, Niblack J, Wadleigh M et al (2007) The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 109:68–76

    Article  PubMed  Google Scholar 

  • Mesa RA, Pardanani AD, Hussein K et al (2009) Phase1/-2 study of Pomalidomide in myelofibrosis. Am J Hematol 85:129–130

    Google Scholar 

  • Mesa RA, Yao X, Cripe LD et al (2010) Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 116:4436–4438

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi R, Noto S, Yamada M et al (2000) Ras and signal transducer and activator of transcription (STAT) are essential and sufficient downstream components of Janus kinases in cell proliferation. Jpn J Cancer Res 91:527–533

    Article  PubMed  CAS  Google Scholar 

  • Moliterno AR, Hexner E, Roboz GJ et al (2009) An open-label study of CEP-701 in patients with JAK2 V617F-positive PV and ET: update of 39 enrolled patients [abstract]. Blood 114:Abstract 753

    Google Scholar 

  • Morris JC, Shapiro GI, Tan AR et al (2008) Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC) [abstract]. J Clin Oncol 26:Abstract 9028

    Google Scholar 

  • Mullally A, Lane SW, Ball B et al (2010) Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17:584–596

    Article  PubMed  CAS  Google Scholar 

  • Panwalkar A, Verstovsek S, Giles FJ (2004) Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 100:657–666

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A, Lasho T, Smith G et al (2009) CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23:1441–1445

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A, George G, Lasho T et al (2010) A phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms [abstract]. Blood 116:Abstract 460

    Google Scholar 

  • Pardanani A, Gotlib JR, Jamieson C et al (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 29:789–796

    Article  PubMed  CAS  Google Scholar 

  • Perkins P, Curtin NJ, Green AR et al (2004) Pain from myelofibrosis treated with regular pamidronate. Br J Haematol 127:366–367

    Article  PubMed  Google Scholar 

  • Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270

    Article  PubMed  Google Scholar 

  • Quintas-Cardama A, Kantarjian HM, Manshouri T et al (2009) Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol 27:4760–4766

    Article  PubMed  CAS  Google Scholar 

  • Quintas-Cardama A, Vaddi K, Liu P et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: implications for the treatment of myeloproliferative neoplasms. Blood 115:3109–3117

    Article  PubMed  CAS  Google Scholar 

  • Rambaldi A, Dellacasa CM, Finazzi G et al (2010) A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 150:446–455

    PubMed  CAS  Google Scholar 

  • Rameshwar P, Denny TN, Stein D et al (1994) Monocyte adhesion in patients with bone marrow fibrosis is required for the production of fibrogenic cytokines. Potential role for interleukin-1 and TGF-beta. J Immunol 153:2819–2830

    PubMed  CAS  Google Scholar 

  • Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696

    Article  PubMed  CAS  Google Scholar 

  • Saharinen P, Silvennoinen O (2002) The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277:47954–47963

    Article  PubMed  CAS  Google Scholar 

  • Santos FP, Kantarjian HM, Jain N et al (2010) Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 115:1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Blanchet O, Dib M et al (2007) Bone changes in myelofibrosis with myeloid metaplasia: a histomorphometric and microcomputed tomographic study. Eur J Haematol 78:500–509

    Article  PubMed  Google Scholar 

  • Schmitt A, Jouault H, Guichard J et al (2000) Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood 96:1342–1347

    PubMed  CAS  Google Scholar 

  • Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468

    Article  PubMed  CAS  Google Scholar 

  • Seymour JF, To B, Goh A et al (2010) First report of the phase I study of the novel oral JAK2 inhibitor SB1518 in patients with myelofibrosis [abstract]. Haematologica 95 [suppl. 2]:Abstract 1444

    Google Scholar 

  • Sivera P, Cesano L, Guerrasio A et al (1994) Clinical and haematological improvement induced by etidronate in a patient with idiopathic myelofibrosis and osteosclerosis. Br J Haematol 86:397–398

    Article  PubMed  CAS  Google Scholar 

  • Skov V, Larsen TS, Thomassen M et al (2010) Increased gene expression of histone deacetylases in patients with Philadelphia-negative chronic myeloproliferative neoplasms [abstract]. Blood 116:Abstract 4119

    Google Scholar 

  • Swerdlow SH, Campo E, Harris NL et al (2008) World health organization classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  • Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A (2011) How I treat myelofibrosis. Blood 117:3494–3504

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Cortes J, Verstovsek S et al (2006) Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 108:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Verstovsek S, Barosi G et al (2009) Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol 27:4563–4569

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Vaidya R, Caramazza D et al (2011) Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 29:1356–1363

    Article  PubMed  CAS  Google Scholar 

  • Thapaliya P, Tefferi A, Pardanani A et al (2011) International working group for myelofibrosis research and treatment response assessment and long-term follow-up of 50 myelofibrosis patients treated with thalidomide-prednisone based regimens. Am J Hematol 86:96–98

    Article  PubMed  CAS  Google Scholar 

  • Thiele J, Kvasnicka HM (2005) Hematopathologic findings in chronic idiopathic myelofibrosis. Semin Oncol 32:380–394

    Article  PubMed  Google Scholar 

  • Tyner JW, Bumm TG, Deininger J et al (2010) CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 115:5232–5240

    Article  PubMed  CAS  Google Scholar 

  • Vannucchi AM, Bianchi L, Cellai C et al (2002) Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood 100:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Vannucchi AM, Guglielmelli P, Lupo L et al (2010) A phase 1/2 study of RAD001, a mTOR inhibitor, in patients with myelofibrosis: final results [abstract]. Blood 116:Abstract 314

    Google Scholar 

  • Verstovsek S, Deeg HJ, Odenike O et al (2010a) Phase 1/2 study of SB1518, a novel JAK2/FLT3 inhibitor, in the treatment of primary myelofibrosis [abstract]. Blood 116:Abstract 3082

    Google Scholar 

  • Verstovsek S, Kantarjian H, Mesa RA et al (2010b) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Verstovsek S, Passamonti F, Rambaldi A et al (2010c) Durable responses with the JAK1/ JAK2 inhibitor, INCB018424, in patients with polycythemia vera (PV) and essential thrombocythemia (ET) refractory or intolerant to hydroxyurea (HU) [abstract]. Blood 116:Abstract 313

    Google Scholar 

  • Wang JC, Chen C, Dumlao T et al (2008) Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 49:2321–2327

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fiskus W, Chong DG et al (2009) Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 114:5024–5033

    Article  PubMed  CAS  Google Scholar 

  • Wernig G, Mercher T, Okabe R et al (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281

    Article  PubMed  CAS  Google Scholar 

  • Wernig G, Kharas MG, Okabe R et al (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13:311–320

    Article  PubMed  CAS  Google Scholar 

  • Winston LA, Hunter T (1995) JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 270:30837–30840

    Article  PubMed  CAS  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  PubMed  CAS  Google Scholar 

  • Yan XQ, Lacey D, Hill D et al (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88:402–409

    PubMed  CAS  Google Scholar 

  • Yu H, Jove R (2004) The STATs of cancer – new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdan Verstovsek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santos, F.P.S., Verstovsek, S. (2012). Ongoing Clinical Trials in Myeloproliferative Neoplasms. In: Barbui, T., Tefferi, A. (eds) Myeloproliferative Neoplasms. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24989-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24989-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24988-4

  • Online ISBN: 978-3-642-24989-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics