Skip to main content

Bacterial Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Polynuclear aromatic hydrocarbons (PAHs) are commonly found pollutants in the environment. Bioremediation has been proposed as an efficient and cost effective technology for removal of PAHs. Poor bioavailability and low aqueous solubility is the major limiting factor in bacterial degradation of PAHs. To overcome this, addition of surfactants have been attempted, however, the effect is not always beneficial. Bacteria can adopt many mechanisms, such as, induction of cell surface hydrophobicity and production of biosurfactant to improve access to poorly soluble PAHs. Substrate interaction is an important phenomenon in the removal of PAHs in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin M, El-Dien A, Hosny MS, El-Mohammady Y (1996) Involvement of bacterial cell surface hydrophobicity in the biodegradation of petroleum hydrocarbons. J Microbiol 31:1–12

    CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65(6):2697–2702

    CAS  Google Scholar 

  • Bauer JE, Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on degradation of individual aromatic hydrocarbons in marine sediment slurries. Appl Environ Microbiol 54:1649–1655

    CAS  Google Scholar 

  • Beckles DM, Ward CH, Hughes JB (1998) Effects of mixtures of PAHs and sediments on fluoranthene biodegradation patterns. Environ Toxicol Chem 17:1246–1251

    Article  CAS  Google Scholar 

  • Berdholt H, Bruheim P, Potocky M, Eimhjellen K (2002) Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Can J Microbiol 48:295–304

    Article  Google Scholar 

  • Boldrin B, Tiehm A, Fritzche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59:1927–1930

    CAS  Google Scholar 

  • Boonchan S, Britz MS, Stanley GL (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol Bioeng 59(4):482–494

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170(1):495–505

    Article  CAS  Google Scholar 

  • Bouchez MD, Blanchet VP, Vandecasteele (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

    Article  CAS  Google Scholar 

  • Bressler DC, Gray MR (2003) Transport and reaction processes in bioremediation of organic contaminants. Int J Chem React Eng 1:1–16

    Google Scholar 

  • Busscher HJ, Weerkamp AH, van der Mei HC, van Pilt AWJ, de Jong HP, Arends J (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–993

    CAS  Google Scholar 

  • Busscher HJ, van der Belt-Gritter B, van der Mei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potential of hydrocarbon droplets. Colloids Surf B 5:111–116

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of PAHs. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chakraborty S, Mukherji S, Mukherji S (2010) Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf B 78:101–108

    Article  CAS  Google Scholar 

  • Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102(1):195–203

    Article  CAS  Google Scholar 

  • Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312

    Article  CAS  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912

    CAS  Google Scholar 

  • Dillon JK, Fuerst JA, Hayward AC, Davis GHG (1986) A comparison of five methods for assaying bacterial hydrophobicity. J Microbiol Methods 6:13–19

    Article  CAS  Google Scholar 

  • Doong R, Lei W (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater B96:15–27

    Article  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57(5):1441–1447

    CAS  Google Scholar 

  • Fritzsche C (1994) Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl Environ Microbiol 60:1687–1689

    CAS  Google Scholar 

  • Ghosh I, Mohanty S, Mukherji S (2010) Comparative study on degradation of a model NAPL by Sphingomonas and Burkholderia sp. and impact of triton-X 100. In: Proceedings of 9th international conference on hydroscience and engineering (ICHE 2010), IIT, Madras, 2–5 Aug 2010

    Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  Google Scholar 

  • Guha S, Jaffe PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391

    Article  CAS  Google Scholar 

  • Guha S, Peters CA, Jaffe PR (1999) Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures. Biotechnol Bioeng 65:491–499

    Article  CAS  Google Scholar 

  • Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, Cambridge

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973

    CAS  Google Scholar 

  • IARC Monograph (1983, 1998) Evaluation of the carcinogenic risk of chemicals to humans: Polynuclear aromatic compounds, Part I, Vol 32. http://monographs.iarc.fr/ENG/Monographs/allmonos49.php

  • Jimenez I, Bartha R (1996) Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Appl Environ Microbiol 62:2311–2316

    CAS  Google Scholar 

  • Juhasz AL, Britz ML, Stanley GA (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular-weight PAHs by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273

    Article  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Microbiol Biotechnol 64:359–362

    CAS  Google Scholar 

  • Kelley I, Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J Ind Microbiol 7:19–26

    Article  CAS  Google Scholar 

  • Kim HS, Weber WJ Jr (2003) Preferential surfactant utilization by a PAH-degrading strain: effects on micellar solubilization phenomena. Environ Sci Technol 37:3574–3580

    Article  CAS  Google Scholar 

  • Knightes CD, Peters CA (2006) Multisubstrate biodegradation kinetics for binary and complex mixtures of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 25(7):1746–1756

    Article  CAS  Google Scholar 

  • Leahy JG, Khalid ZM, Quintero EJ, Jones-Meehan JM, Heidelberg JF, Batchelor PJ, Colwell RR (2003) The concentrations of hexadecane and inorganic nutrients modulate the production of extracellular membrane-bound vesicles, soluble protein, and bioemulsifier by Acinetobacter venetianus RAG-1 and Acinetobacter sp. strain HO1-N. Can J Microbiol 49:569–575

    Article  CAS  Google Scholar 

  • Lindahl M, Faris A, Wadstrom T, Hjerten S (1981) A new test based on ‘salting out’ to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677:471–476

    Article  CAS  Google Scholar 

  • Luning Prak DJ, Pritchard PH (2002) Degradation of polycyclic aromatic hydrocarbons dissolved in tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505. Can J Microbiol 48:151–158

    Article  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulphate. Chemosphere 38(15):3463–3472

    Article  CAS  Google Scholar 

  • McLellan SL, Warshawsky D, Shann JR (2002) The effect of polycyclic aromatic hydrocarbons on the degradation of benzo[a]pyrene by Mycobacterium sp. strain RJGII-135. Environ Toxicol Chem 21:253–259

    Article  CAS  Google Scholar 

  • Mohanty S (2010) Surfactant-aided biodegradation of petroleum hydrocarbons from non-aqueous phase liquids by Burkholderia sps. Ph.D. Thesis, IIT Bombay, Mumbai, India

    Google Scholar 

  • Mohanty G, Mukherji S (2008) Enhancement of NAPL bioavailability by induction of cell-surface hydrophobicity in Exiguobacterium aurantiacum and Burkholderia cepacia. Ind J Biotechnol 7(3):295–306

    Google Scholar 

  • Molina MR, Araujo RE, Hodson (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from PAH contaminated river sediments. Can J Microbiol 45:520–529

    Article  CAS  Google Scholar 

  • Mrozik A, Seget ZP, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25

    CAS  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    CAS  Google Scholar 

  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH degrading bacteria from geographically diverse soils. Antonie van Leeuwenhoek 71:329–343

    Article  CAS  Google Scholar 

  • Mukherji S, Weber WJ Jr (1998) Mass transfer effects on microbial uptake of naphthalene from complex NAPLs. Biotechnol Bioeng 60(6):750–760

    Article  CAS  Google Scholar 

  • Mukherji S, Weber WJ Jr (2001) Mass transfer effects on microbial uptake of naphthalene from complex NAPLs. Biotechnol Bioeng 75(1):130

    Article  CAS  Google Scholar 

  • Mukherji S, Swain AK, Venkataraman C (2002) Comparative mutagenicity assessment of aerosols in emissions from biofuel combustion. Atmos Environ 36:5627–5635

    Article  CAS  Google Scholar 

  • Navon-Venezia S, Banin E, Ron EZ, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384

    Article  CAS  Google Scholar 

  • Nue T (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60(1):151–166

    Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Amund OO (2008) Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J Microbiol Biotechnol 24:2639–2646

    Article  CAS  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33(24):4499–4507

    Article  CAS  Google Scholar 

  • Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61(4):342–351

    Article  CAS  Google Scholar 

  • Rehmann K, Noll HP, Steinberg CE, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36:2977–2992

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42:375–377

    CAS  Google Scholar 

  • Rosenberg M, Gutnic D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Schippers C, Geßner K, Müller T, Scheper T (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83(3):189–198

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S (2008) Phenanthrene stimulates the degradation of Pyrene and fluoranthene by Burkholderia sp. VUN 10013. World J Microbiol Biotechnol 24:523–531

    Article  CAS  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonads. Appl Environ Microbiol 61:357–362

    CAS  Google Scholar 

  • Thibault SL, Anderson M, Frankenberger WT Jr (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62:283–287

    CAS  Google Scholar 

  • Tiehm A, Fritzsche C (1995) Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl Microbial Biotechnol 42:964–968

    Article  CAS  Google Scholar 

  • Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified Alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67:1102–1106

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Van Andel JG, Reulkens WH (1995) Influence of non-ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61(5):1699–1705

    CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial culture. Appl Microbiol Biotechnol 32:479–484

    Article  CAS  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl Microbiol Biotechnol 34:528–535

    Article  CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65(7):2961–2968

    CAS  Google Scholar 

  • Wick LY, De Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58(3):378–385

    Article  CAS  Google Scholar 

  • Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense Lb501t. Appl Environ Microbiol 59(10):6133–6142

    Article  Google Scholar 

  • Willumsen PA, Arvin E (1999) Kinetics of degradation of surfactant solubilized fluoranthene by a Sphingomonas paucimobilis. Environ Sci Technol 33:2571–2578

    Article  CAS  Google Scholar 

  • Willumsen PA, Karlson U (1998) Effect of calcium on the surfactant tolerance of a fluoranthene degrading bacterium. Biodegradation 9:369–379

    Article  CAS  Google Scholar 

  • Willumsen PA, Karlson U (2001) Bacterial cell surface hydrophobicity affecting degradation of PAHs in NAPLs. In: Proceedings of 6th international in situ and on site bioremediation symposium, San Diego, CA, 4–7 June 2001, Battelle Press, Columbus, Ohio, pp 141–147

    Google Scholar 

  • Yaws CL (1999) Chemical properties handbook. McGraw Hill, New York

    Google Scholar 

  • Zhao Z, Selvam A, Wong JWC (2011) Effects of rhamnolipids on cell surface hydrophobicity of PAHs degrading bacteria and the biodegradation of phenanthrene. Bioresour Technol 102(5):3999–4007

    Article  CAS  Google Scholar 

  • Zita A, Hermansson M (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63:1168–1170

    CAS  Google Scholar 

  • Zytner RG, Slab AC, Stiver WH (2006) Bioremediation of diesel fuel contaminated soil: comparison of individual compounds to complex mixtures. Soil Seed Cont 15:277–297

    CAS  Google Scholar 

Download references

Acknowledgements

The authors will like to acknowledge Department of Science and Technology, New Delhi, India for providing funding for the project “Surfactant aided biodegradation of model NAPLs” which has given us practical insights on PAH biodegradation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Mukherji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukherji, S., Ghosh, I. (2012). Bacterial Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_7

Download citation

Publish with us

Policies and ethics