Skip to main content

3D Structure Modeling of a Transmembrane Protein, Fatty Acid Elongase

  • Conference paper
Computational Systems-Biology and Bioinformatics (CSBio 2010)

Abstract

Fatty acid elongase is an enzyme responsible for fatty acid chain elongation, a key step in synthesis of long chain fatty acids, including polyunsaturated fatty acids (PUFAs). Currently, the increasing demand has raised the interest in obtaining these PUFAs from alternative sources, e.g. filamentous fungi that are more economical and sustainable. To date, many research on primary structures of fatty acid elongases ELO family, including fugal elongases, revealed several conserved motifs. However, molecular mechanism for their functions is still unclear. In addition to experimental study, computational analysis of elongase structures may provide more insight into their substrate specificities and mechanisms of fatty acid chain elongation. Thus, this work proposes a 3D structural model of elongase of Mortierella alpina (BAF97073). This fungal elongase has been reported to be a PUFA-specific elongation enzyme. The model was built by an ab initio membrane-modeling application using ROSETTA 3.1, and was then refined by molecular dynamic simulation. The 7-transmembrane helices of the constructed model folds into an anti-parallel configuration and embeds in the lipid bilayer. The model reveals that all four conserved signature motifs of fatty acid elongase enzymes are located within the juxta-cytosolic transmembrane helix regions. This work also suggests a modeling strategy of this elongase structural model that can be applied to model other transmembrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wettstein-Knowles, P.M.: Waxes: Chemistry, Molecular Biology and Function. In: Hamilton, R.J. (ed.), vol. 6, pp. 91–130. Oily Press, Dundee (1995)

    Google Scholar 

  2. Bernert, J.T., Sprecher, H.: An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes. J. Biol. Chem. 252(19), 6736–6744 (1977)

    CAS  PubMed  Google Scholar 

  3. Cinti, D.L., Cook, L., Nagi, M.N., Suneja, S.K.: The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog. Lipid Res. 31(1), 1–51 (1992)

    Article  CAS  PubMed  Google Scholar 

  4. Parker-Barnes, J.M., Das, T., Bobik, E., Leonard, A.E., Thurmond, J.M., Chaung, L.T., Huang, Y.S., Mukerji, P.: Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 97, 8284–8289 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nugteren, D.H.: The enzymic chain elongation of fatty acids by rat-liver microsomes. Biochim. Biophys. Acta. 106, 280–90 (1965)

    Google Scholar 

  6. Petrey, D., Honing, B.: Protein structure prediction: inroads to biology. Mol. Cell. 20, 811–819 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the Web a case study using the Phyre server. Nature protocol 4(3), 363–371 (2009)

    Article  CAS  Google Scholar 

  8. Joubés, J., Raffaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., Domergue, F., Lessire, R.: The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol. Biol. 67, 547–566 (2008)

    Article  PubMed  Google Scholar 

  9. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.L.: Predicting transmembrane protein topology with a hidden Markov model Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Käll, L., Krogh, A., Sonnhammer, E.L.L.: A Combined Transmembrane Topology and Signal Peptide Prediction Method. J. Mol. Biol. 338(5), 1027–1036 (2004)

    Article  PubMed  Google Scholar 

  11. von Heijne, G.: Membrane Protein Structure Prediction Hydrophobicity Analysis and the Positive Inside Rule. J. Mol. Biol. 225, 487–49 (1992)

    Google Scholar 

  12. Hofmann, K., Stoffel, W.: TMbase - A database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler 374, 166 (1993)

    Google Scholar 

  13. Mitaku, S., Hirokawa, T., Tsuji, T.: Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18, 608–616 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Viklund, H., Elofsson, A.: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15), 1662–1668 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Rost, B., Casadio, R., Fariselli, P.: Refining neural network predictions for helical transmembrane proteins by dynamic programming. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4, pp. 192–200 (1996)

    Google Scholar 

  16. Klammer, M., Messina, D.N., Schmitt, T., Sonnhammer, E.L.: MetaTM - a consensus method for transmembrane protein topology prediction. BMC Bioinformatics 10(314) (2009)

    Google Scholar 

  17. Eswar, N., Marti-Renom, M.A., Webb, B., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U., Sali, A.: Comparative Protein Structure Modeling With Modeller in Current Protocols in Bioinformatics. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  18. Chivian, D., Kim, D.E., Malmstrom, L., Schonbrun, J., Rohl, C.A., Baker, D.: Prediction of CASP6 structures using automated Robetta protocols. Proteins 61(7), 157–166 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Rost, B., Casadio, R., Fariselli, P.: Refining neural network predictions for helical transmembrane proteins by dynamic programming. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4, pp. 192–200 (1996)

    Google Scholar 

  20. Melo, F., Feytmans, E.: Assessing protein structures with a non-local atomic interaction energy. J. Mol. Biol. 277(5), 1141–1152 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall, W.B., Snoeyink, J., Richardson, J.S., Richardson, D.C.: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research 35 (2007)

    Google Scholar 

  23. Gautier, R., Douguet, D., Antonny, B., Drin, G.: HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18), 2101–2102 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Denic, V., Weissman, J.S.: A Molecular Caliper Mechanism for Determining Very Long-Chain Fatty Acid Length. Cell. 130(4), 663–677 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chumningan, S., Pornputtapong, N., Laoteng, K., Cheevadhanarak, S., Thammarongtham, C. (2010). 3D Structure Modeling of a Transmembrane Protein, Fatty Acid Elongase. In: Chan, J.H., Ong, YS., Cho, SB. (eds) Computational Systems-Biology and Bioinformatics. CSBio 2010. Communications in Computer and Information Science, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16750-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16750-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16749-2

  • Online ISBN: 978-3-642-16750-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics