Skip to main content

Biosurfactants: A General Overview

  • Chapter
  • First Online:
Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

This Microbiology Monographs volume covers the current and most recent advances in the field of microbial surfactants. There is increasing interest in microbial biosurfactants for several reasons. First, biosurfactants are considered environmentally “friendly” since they are relatively nontoxic and biodegradable. Second, biosurfactants have unique structures that are just starting to be appreciated for their potential application to many different facets of the industry, ranging from biotechnology to environmental cleanup. The aim of this introductory chapter is to give a general overview of biosurfactants, their properties, their relationship to the synthetic surfactant industry, and their distribution in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  PubMed  CAS  Google Scholar 

  • Bodour AA, Guerrero-Barajas C, Jiorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bates RB, Maier RM (2004) Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp strain MTN11. Appl Environ Microbiol 70:114–120

    Article  PubMed  CAS  Google Scholar 

  • Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    Article  PubMed  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Qiao MQ, Zhang HY, Zhu HL (2005) Sorption and transport of naphthalene and phenanthrene in silica sand in the presence of rhamnolipid biosurfactant. Sep Sci Technol 40:2411–2425

    Article  CAS  Google Scholar 

  • Cooper DG, Zajic JE, Denis C (1981) Surface-active properties of a biosurfactant from Corynebacterium lepus. J Am Oil Chem Soc 58:77–80

    Article  CAS  Google Scholar 

  • Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69:705–711

    Article  PubMed  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Article  PubMed  Google Scholar 

  • Garcia-Junco M, Gomez-Lahoz C, Niqui-Arroyo JL, Ortega-Calvo JJ (2003) Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environ Sci Technol 37:2988–2996

    Article  PubMed  CAS  Google Scholar 

  • Hayase M, Ishihata S (2006) Development of skin care products by using fermentation technology. Fragr J 34:83–89

    CAS  Google Scholar 

  • Hewald S, Josephs K, Bölker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040

    Google Scholar 

  • Janshekar H, Chang RJ, Yokose K, Ma X (2007) Surfactants. (4/23/2010;) http://www.sriconsulting.com/SCUP/Public/Reports/SURFA000/

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    Google Scholar 

  • Knickerbocker C, Nordstrom DK, Southam G (2000) The role of “blebbing” in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chem Geol 169:425–433

    Article  CAS  Google Scholar 

  • Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39:295–304

    CAS  Google Scholar 

  • Kralova I, Sjoblom J (2009) Surfactants used in food industry: a review. J Dispersion Sci Technol 30:1363–1383

    Article  CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on normal-alkanes. Appl Environ Microbiol 44:864–870

    PubMed  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 74:59–70

    Article  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids – biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  PubMed  CAS  Google Scholar 

  • Laycock MV, Hildebrand PD, Thibault P, Walter JA, Wright JLC (1991) Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Psedomonas fluorescens. J Agric Food Chem 39:483–489

    Article  CAS  Google Scholar 

  • Lebron-Paler A (2008) Solution and interfacila characterization of rhamnolpid biosurfactant from Pseudomonas aeruginosa ATCC 9027. PhD Dissertation, University of Arizona

    Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174:1769–1776

    Google Scholar 

  • Meylheuc T, Methivier C, Renault M, Herry JM, Pradier CM, Bellon-Fontaine MN (2006) Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids Surf B Biointerfaces 52:128–137

    Article  PubMed  CAS  Google Scholar 

  • Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  PubMed  CAS  Google Scholar 

  • Navonvenezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  Google Scholar 

  • Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by nontoxic soil-washing agents. J Environ Qual 32:899–908

    PubMed  CAS  Google Scholar 

  • Nickel D, Nitsch C, Kurzendorfer P, von Rybinski W (1992) Trends in colloid and interface science VI. Springer, Berlin

    Google Scholar 

  • Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Olivera NL, Commendatore MG, Moran AC, Esteves JL (2000) Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. J Ind Microbiol Biotechnol 25:70–73

    Article  CAS  Google Scholar 

  • Pianelli G, Kado T, Yosioka T (2002) Characteristics and cosmetic applications of sopholiance (sophorolipid). Fragr J 30:86–92

    CAS  Google Scholar 

  • Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant–Microbe Interact 19:699–710

    Article  PubMed  CAS  Google Scholar 

  • Reiling HE, Thaneiwyss U, Guerrasantos LH, Hirt R, Kappeli O, Fiechter A (1986) Pilot-plant production of rhamnolipid surfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    PubMed  CAS  Google Scholar 

  • Ritter SK (2004) Green innovations. Chem Eng News 82:25–30

    Article  CAS  Google Scholar 

  • Rodrigues L, van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70:4408–4410

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues L, van der Mei H, Banat IM, Teixeira J, Oliveira R (2006b) Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol 46:107–112

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil biorremediation. Curr Opin Biotechnol 13:249–252

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Saini HS, Barragan-Huerta BE, Lebron-Paler A, Pemberton JE, Vazquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AAL, Maier RM (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  PubMed  CAS  Google Scholar 

  • Schippers C, Gessner K, Muller T, Scheper T (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83:189–198

    Article  PubMed  CAS  Google Scholar 

  • Seydlova G, Svobodova J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    Article  CAS  Google Scholar 

  • Shin KH, Ahn Y, Kim KW (2005) Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environ Toxicol Chem 24:2768–2774

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  • Soberon-Chavez G, Lepine F, Deziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  CAS  Google Scholar 

  • Soderman O, Johansson I (2000) Polyhydroxyl-based surfactants and their physico-chemical properties and applications. Curr Opin Colloid Interface Sci 4:391–401

    Article  Google Scholar 

  • Souza V et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570

    Article  PubMed  CAS  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12

    Article  CAS  Google Scholar 

  • Stipcevic T, Piljac T, Isseroff RR (2005) Di-rhamnolipid from Pseudomonas aeruginosa displays differential effects on human keratinocyte and fibroblast cultures. J Dermatol Sci 40:141–143

    Article  PubMed  CAS  Google Scholar 

  • Stipcevic T, Pijac A, Pijac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  PubMed  Google Scholar 

  • Tan H, Champion JT, Artiola JF, Brusseau ML, Miller RM (1994) Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci Technol 28:2402–2406

    Article  PubMed  CAS  Google Scholar 

  • Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2010) Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst Appl Microbiol (Submitted)

    Google Scholar 

  • Torrens JL, Herman DC, Miller-Maier RM (1998) Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environ Sci Technol 32:776–781

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Uysal A, Turkman A (2005) Effect of biosurfactant on 2, 4-dichlorophenol biodegradation in an activated sludge bioreactor. Process Biochem 40:2745–2749

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  PubMed  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    PubMed  CAS  Google Scholar 

  • Wang SL, Mulligan CN (2009) Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem 24:928–935

    Article  CAS  Google Scholar 

  • Wen J, Stacey SP, McLaughlin MJ, Kirby JK (2009) Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem 41:2214–2221

    Article  CAS  Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423

    Article  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Tsuzuki T, Ogata E, Fusyo Y (2001) Surfactin sodium salt: an excellent bio-surfactant for cosmetics. J Cosmet Sci 52:153–154

    PubMed  CAS  Google Scholar 

  • Zhang TH, Marchant RE (1996) Novel polysaccharide surfactants: the effect of hydrophobic and hydrophilic chain length on surface active properties. J Colloid Interface Sci 177:419–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RMM gratefully acknowledges financial support of this work by the National Science Foundation (CHE-0714245) and invaluable discussions with collaborator Jeanne E. Pemberton on biosurfactant structure and chemistry. GS-Ch acknowledges financial support from CONACYT (50201) and DGPA-UNAM PAPIIT (IN200707.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soberón-Chávez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soberón-Chávez, G., Maier, R.M. (2011). Biosurfactants: A General Overview. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_1

Download citation

Publish with us

Policies and ethics