Skip to main content

Langevin Equations and Non-linear Dynamics

  • Chapter
  • First Online:
Quantitative Sociodynamics

Abstract

For the modelling of stochastically behaving systems, apart from the master equation and the Fokker-Planck equation, often also stochastic differential equations are used (cf. [84]). The most common one is the (general) L angevin equation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stratonovich RL (1963, 1967) Topics in the theory of random noise, vols 1, 2. Gordon and Breach, New York

    Google Scholar 

  2. Risken H (1989) The Fokker-Planck equation, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Haken H (1983) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  4. Schuster HG (1988) Deterministic chaos, 2nd edn. VCH, Weinheim

    Google Scholar 

  5. Oseledec VI (1968) A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 19:197

    MathSciNet  Google Scholar 

  6. Steeb W-H (1991) A handbook of terms used in chaos and quantum chaos. B.I.-Wissenschaftsverlag, Mannheim

    MATH  Google Scholar 

  7. Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, Berlin

    MATH  Google Scholar 

  8. Gardiner CW (1985) Handbook of stochastic methods, 2nd edn. Springer, Berlin

    Google Scholar 

  9. Hausdorff F (1919) Dimension und äußeres Maß. Mathematische Annalen 79:157–179

    Article  MathSciNet  Google Scholar 

  10. Hilborn RC (1994) Chaos and nonlinear dynamics. Oxford University Press, New York, NY

    MATH  Google Scholar 

  11. Hopf E (1942) Abzweigungen einer periodischen Lösung von einer stationären Lösung eines Differentialgleichungssystems. Math Naturwiss Klasse 94:1

    Google Scholar 

  12. Hu B, Rudnick J (1982) Exact solutions to the Feigenbaum renormalization-group equations for intermittency. Phys Rev Lett 48(24):1645–1648

    Article  MathSciNet  Google Scholar 

  13. Kaplan J, Yorke J (1979) In: Peitgen H-O, Walther H-O (eds) Functional differential equations and approximation of fixed points. Springer, New York, NY

    Google Scholar 

  14. Khintchine A (1934) Korrelationstheorie der stationären stochastischen Prozesse. Mathematische Annalen 109:604–615

    Article  MathSciNet  Google Scholar 

  15. Bai-Lin H (ed) (1984) Chaos. World Scientific, Singapore

    MATH  Google Scholar 

  16. Barnsley M (1988) Fractals everywhere. Academic Press, Boston

    MATH  Google Scholar 

  17. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York, NY

    Google Scholar 

  18. McCauley JL (1993) Chaos dynamics and fractals. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Newhouse S, Ruelle D, Takens F (1978) Occurrence of strange axiom A attractors near quasiperiodic flow on Tm, m ≥ 3. Commun Math Phys 64:35

    Article  MathSciNet  MATH  Google Scholar 

  20. Poincaré H (1892) Les Méthodes Nuovelles de la Méchanique Celeste. Gauthier-Villars, Paris

    Google Scholar 

  21. Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74:189–197

    Article  MathSciNet  Google Scholar 

  22. Schuster HG (1988) Deterministic chaos, 2nd edn. VCH, Weinheim

    Google Scholar 

  23. Shimada I, Nagashima T (1979) A numerical approach to ergodic problem of dissipative dynamical systems. Prog Theor Phys 61(6):1605–1616

    Article  MathSciNet  MATH  Google Scholar 

  24. Steeb W-H (1991) A handbook of terms used in chaos and quantum chaos. B.I.-Wissenschaftsverlag, Mannheim

    MATH  Google Scholar 

  25. Wiener N (1930) Generalized harmonic analysis. Acta Math 55(1):117–258

    Article  MathSciNet  MATH  Google Scholar 

  26. Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phys 19(1):25–52

    Article  MathSciNet  MATH  Google Scholar 

  27. Feigenbaum MJ (1979) The universal metric properties of nonlinear transformations. J Stat Phys 21(6):669–706

    Article  MathSciNet  MATH  Google Scholar 

  28. Grassberger P (1981) On the Hausdorff dimension of fractal attrators. J Stat Phys 19:25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helbing .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D. (2010). Langevin Equations and Non-linear Dynamics. In: Quantitative Sociodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11546-2_7

Download citation

Publish with us

Policies and ethics