Skip to main content

Molecular and Functional Determinants of Ca2+ Signaling Microdomains

  • Chapter
  • First Online:
Signal Transduction: Pathways, Mechanisms and Diseases

Abstract

Calcium homeostasis is a finely tuned process that occurs within narrowly defined physiological parameters. Compartmentalization of the calcium signaling complex involved in sensing, generating, and propagating the signal ensures a rapid response to the stimuli and fidelity of the response. This is achieved by assembling the key components involved in this process into a closely associated complex. Such a complex has been well established in the case of store-operated calcium entry (SOCE), a critical Ca2+ signaling mechanism that regulates a variety of cellular functions. Membrane domains (e.g., the plasma membrane lipid raft domains) as well as specific proteins (e.g., caveolin-1) provide scaffolds for assembly of signaling complexes associated with Ca2+ entry, which include not only the channels mediating Ca2+ flux but also the regulatory proteins and downstream sensors. In this chapter, we will discuss the function of TRPC1 (a channel involved in SOCE) and organization of TRPC1 channel complexes, involving the role of newly identified proteins, Orai1 and STIM1. Finally, we will consider recent advances in the field that substantiate and extend our understanding of the molecular components which determine the assembly and compartmentalization of Ca2+ entry signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alicia S, Angelica Z, Carlos S, Alfonso S, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: Moving TRPC1 in and out of lipid rafts. Cell Calcium 44:479–491

    Article  CAS  PubMed  Google Scholar 

  • Alvarez DF, King JA, Townsley MI (2005) Resistance to store depletion-induced endothelial injury in rat lung after chronic heart failure. Am J Respir Crit Care Med 172:1153–1160

    Article  PubMed  Google Scholar 

  • Ambudkar IS (2004) Cellular domains that contribute to Ca2+ entry events. Sci STKE 243:pe32

    Article  Google Scholar 

  • Ambudkar IS (2006) Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci 27:25–32

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar IS (2007) TRPC1: a core component of store-operated calcium channels. Biochem Soc Trans 35:96–100

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar IS, Brazer SC, Liu X, Lockwich T, Singh B (2004) Plasma membrane localization of TRPC channels: role of caveolar lipid rafts. Novartis Found Symp 258:63-70, discussion 70-64, 98-102, 263-106

    Google Scholar 

  • Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca(2+) channels and regulation of calcium microdomains. Cell Calcium 40:495–504

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS (2005) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280:12908–12916

    Article  CAS  PubMed  Google Scholar 

  • Beech DJ (2005) Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. Clin Exp Pharmacol Physiol 32:597–603

    Article  CAS  PubMed  Google Scholar 

  • Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847

    Article  CAS  PubMed  Google Scholar 

  • Berridge M (2004) Conformational coupling: a physiological calcium entry mechanism. Sci STKE 243: pe33

    Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Betsuyaku T, Griffin GL, Watson MA, Senior RM (2001) Laser capture microdissection and real-time reverse transcriptase/polymerase chain reaction of bronchiolar epithelium after bleomycin. Am J Resp Cell Mol Biol 25:287–384

    Google Scholar 

  • Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  CAS  PubMed  Google Scholar 

  • Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brownlow SL, Harper AG, Harper MT, Sage SO (2004) A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 35:107–113

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Fatherazi S, Presland RB, Belton CM, Roberts FA, Goodwin PC, Schubert MM, Izutsu KT (2006) Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch 452:43–52

    Article  CAS  PubMed  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283:12935–12940

    Article  CAS  PubMed  Google Scholar 

  • Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell I SOC. Cell Calcium 33:323–336

    Article  CAS  PubMed  Google Scholar 

  • Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Cooper DM (2003) Molecular and cellular requirements for the regulation of adenylate cyclases by calcium. Biochem Soc Trans 31:912–915

    Article  CAS  PubMed  Google Scholar 

  • Diculescu I (1980) On the unity of cytomembrane system in the skeletal muscle. Morphol Embryol (Bucur) 26:205–212

    CAS  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760

    Article  CAS  PubMed  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  CAS  PubMed  Google Scholar 

  • Engelke M, Friedrich O, Budde P, Schaefer C, Niemann U, Zitt C, Jungling E, Rocks O, Luckhoff A, Frey J (2002) Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1β. FEBS Lett 523:193–199

    Article  CAS  PubMed  Google Scholar 

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69:788–797

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12

    CAS  PubMed  Google Scholar 

  • Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K (1992) Localization of inositol 1, 4, 5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    Article  PubMed  Google Scholar 

  • Fujimoto T, Hagiwara H, Aoki T, Kogo H, Nomura R (1998) Caveolae: from a morphological point of view. J Electron Microsc (Tokyo) 47:451–460

    CAS  Google Scholar 

  • Gabella G (1971) Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. J Cell Sci 8:601–609

    CAS  PubMed  Google Scholar 

  • Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ (2000) Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13:243–253

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  CAS  PubMed  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3, 4, 5) P3 and PI(4, 5) P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    Article  CAS  PubMed  Google Scholar 

  • Hisatsune C, Mikoshiba K (2005) Novel compartment implicated in calcium signaling--is it an “induced coupling domain”? Sci STKE 2005: pe53.

    Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Isshiki M, Anderson RG (2003) Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic 4:717–723

    Article  CAS  PubMed  Google Scholar 

  • Isshiki M, Ando J, Korenaga R, Kogo H, Fujimoto T, Fujita T, Kamiya A (1998) Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. P Natl Acad Sci USA 95:5009–5014

    Article  CAS  Google Scholar 

  • Isshiki M, Ying Y, Fujita T, Anderson RGW (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:23389–23398

    Article  CAS  Google Scholar 

  • Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels (Austin) 2(6) 401–403

    Google Scholar 

  • Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 96:1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, Shin DM, Muallem S (2003) Signalling specificity in GPCR-dependent Ca2+ signalling. Cell Signal 15:243–253

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, Kim JY, Zeng W, Muallem S (2005) Protein-protein interaction and functionTRPC channels. Pflugers Arch 451:116–124

    Article  CAS  PubMed  Google Scholar 

  • Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C (2006) Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Luo X, Muallem S (2004) Functional mapping of Ca2+ signaling complexes in plasma membrane microdomains of polarized cells. J Biol Chem 279:27837–27840

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. P Natl Acad Sci USA 104:4682–4687

    Article  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. P Natl Acad Sci USA 104:9301–9306

    Article  CAS  Google Scholar 

  • Liu X, Ambudkar IS (2001) Characteristics of a store-operated calcium-permeable channel: sarcoendoplasmic reticulum calcium pump function controls channel gating. J Biol Chem 276:29891–29898

    Article  CAS  PubMed  Google Scholar 

  • Liu X, O’Connell A, Ambudkar IS (1998) Ca2+-dependent inactivation of a store-operated Ca2+ current in human submandibular gland cells. Role of a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. J Biol Chem 273:33295–33304

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca(2+) influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca(2+)-permeable cation currents are activated by internal Ca(2+)-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200:93–104

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606

    Article  CAS  PubMed  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  CAS  PubMed  Google Scholar 

  • Lockwich T, Singh BB, Liu X, Ambudkar IS (2001) Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem 276:42401–42408

    Article  CAS  PubMed  Google Scholar 

  • Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281:28254–28264

    Article  CAS  PubMed  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1, 4, 5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. J Biol Chem 278:33492–33500

    Article  CAS  PubMed  Google Scholar 

  • Meyer R, Stockem W, Schmitz M, Haas HG (1982) Histochemical demonstration of an ATP-dependent Ca2+-pump in bullfrog myocardial cells. Z Naturforsch [C]. 37:489–501

    CAS  Google Scholar 

  • Minke H, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    CAS  PubMed  Google Scholar 

  • Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 90:RE1

    Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 272:re3

    Article  Google Scholar 

  • Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681

    Article  CAS  PubMed  Google Scholar 

  • Muallem S, Wilkie TM (1999) G protein-dependent Ca2+ signaling complexes in polarized cells. Cell Calcium 26:173–180

    Article  CAS  PubMed  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC (2007) Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282:16631–16643

    Article  CAS  PubMed  Google Scholar 

  • Murthy KS, Makhlouf GM (2000) Heterologous desensitization mediated by G protein-specific binding to caveolin. J Biol Chem 275:30211–30219

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  CAS  PubMed  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007a) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    Article  CAS  PubMed  Google Scholar 

  • Ong HL, Liu X, Tsaneva-Atanasova K, Singh BB, Bandyopadhyay BC, Swaim WD, Russell JT, Hegde RS, Sherman A, Ambudkar IS (2007b) Relocalization of STIM1 for activation of store-operated Ca(2+) entry is determined by the depletion of subplasma membrane endoplasmic reticulum Ca(2+) store. J Biol Chem 282:12176–12185

    Article  CAS  PubMed  Google Scholar 

  • Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid Rafts Determine Clustering of STIM1 in Endoplasmic Reticulum-Plasma Membrane Junctions and Regulation of Store-operated Ca2+ Entry (SOCE). J Biol Chem 283:17333–17340

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  • Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  CAS  PubMed  Google Scholar 

  • Patterson RL, van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1, 4, 5-trisphosphate receptors and mediates Ca2+ release. P Natl Acad Sci USA 101:2328–2332

    Article  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229

    CAS  PubMed  Google Scholar 

  • Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792

    Article  CAS  PubMed  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  CAS  PubMed  Google Scholar 

  • Rychkov G, Barritt GJ (2007) TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol 179:23–52

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451:35–42

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca(2+) entry: Roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  CAS  PubMed  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  • Suzuki S, Sugi H (1989) Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studied by the pyroantimonate method. Cell Tissue Res 257:237–246

    Article  CAS  PubMed  Google Scholar 

  • Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708

    Article  CAS  PubMed  Google Scholar 

  • Tojyo Y, Morita T, Nezu A, Tanimura A (2008) The clustering of inositol 1, 4, 5-trisphosphate (IP(3)) receptors is triggered by IP(3) binding and facilitated by depletion of the Ca(2+) store. J Pharmacol Sci 107:138–150

    Article  CAS  PubMed  Google Scholar 

  • Uehara K (2005) Localization of TRPC1 channel in the sinus endothelial cells of rat spleen. Histochem Cell Biol 123:347–356

    Article  CAS  PubMed  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006a) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006b) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42:205–211

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19–7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Lu J, Li Z, Yu X, Chen L, Xu T (2006a) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350:969–976

    Article  CAS  PubMed  Google Scholar 

  • Xu SZ, Boulay G, Flemming R, Beech DJ (2006b) E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol Heart Circ Physiol 291:H2653–H2659

    Article  CAS  PubMed  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  CAS  PubMed  Google Scholar 

  • Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280:29559–29569

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Xu SZ, Jackson PK, McHugh D, Kumar B, Fountain SJ, Beech DJ (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559:739–750

    CAS  PubMed  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu S. Ambudkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambudkar, I.S., Ong, H.L., Singh, B.B. (2010). Molecular and Functional Determinants of Ca2+ Signaling Microdomains. In: Sitaramayya, A. (eds) Signal Transduction: Pathways, Mechanisms and Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02112-1_13

Download citation

Publish with us

Policies and ethics