Skip to main content

TRPC1 Ca2+-Permeable Channels in Animal Cells

  • Chapter
Transient Receptor Potential (TRP) Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

The full-length transient receptor (TRPC)1 polypeptide is composed of about 790 amino acids, and several splice variants are known. The predicted structure and topology is of an integral membrane protein composed of six transmembrane domains, and a cytoplasmic C- and N-terminal domain. The N-terminal domain includes three ankyrin repeat motifs. Antibodies which recognise TRPC1 have been developed, but it has been difficult to obtain antibodies which have high affinity and specificity for TRPC1. This has made studies of the cellular functions of TRPC1 somewhat difficult. The TRPC1 protein is widely expressed in different types of animal cells, and within a given cell is found at the plasma membrane and at intracellular sites. TRPC1 interacts with calmodulin, caveolin-1, the InsP3 receptor, Homer, phospholipase C and several other proteins. Investigations of the biological roles and mechanisms of action of TRPC1 have employed ectopic (over-expression or heterologous expression) of the polypeptide in addition to studies of endogenous TRPC1. Both approaches have encountered difficulties. TRPC1 forms heterotetramers with other TRPC polypeptides resulting in cation channels which are non-selective. TRPC1 may be: a component of the pore of store-operated Ca2+ channels (SOCs); a subsidiary protein in the pathway of activation of SOCs; activated by interaction with InsP3R; and/or activated by stretch. Further experiments are required to resolve the exact roles and mechanisms of activation of TRPC1. Cation entry through the TRPC1 channel is feed-back inhibited by Ca2+ through interaction with calmodulin, and is inhibited by Gd3+, La3+, SKF96365 and 2-APB, and by antibodies targeted to the external mouth of the TRPC1 pore. Activation of TRPC1 leads to the entry to the cytoplasmic space of substantial amounts of Na+ as well as Ca2+. A requirement for TRPC1 is implicated in numerous downstream cellular pathways. The most clearly described roles are in the regulation of growth cone turning in neurons. It is concluded that TRPC1 is a most interesting protein because of the apparent wide variety of its roles and functions and the challenges posed to those attempting to elucidate its primary intracellular functions and mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB (2004) Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 279:20941–20949

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar IS (2006) Ca2+ signalling microdomains:platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci 27:25–32

    Article  PubMed  CAS  Google Scholar 

  • Beech D (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    Article  PubMed  CAS  Google Scholar 

  • Beech DJ, Xu SZ, McHugh D, Flemming R (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium 33:433–440

    Article  PubMed  CAS  Google Scholar 

  • Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847

    Article  PubMed  CAS  Google Scholar 

  • Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A, Xu SZ, Beech DJ, Dreja K, Hellstrand P (2005) Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol 288:C872–880

    Article  CAS  Google Scholar 

  • Birnbaumer L, Zhu X, Jiang MS, Boulay G, Peyton M, Vannier B, Brown D, Platani D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci U S A 93:15195–15202

    Article  PubMed  CAS  Google Scholar 

  • Bobanovic L, Laine M, Peterson C, Bennett D, Berridge M, Lipp P, Ripley S, Bootman M (1999) Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus. Biochem J 340:593–599

    Article  PubMed  CAS  Google Scholar 

  • Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 22:163–170

    Article  PubMed  Google Scholar 

  • Bolotina V, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+=entry pathway. Trends Biochem Sci 30:378–387

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Zhu X, Peyton M, Jiang MS, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of the Drosphilia transient receptor potential (trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  PubMed  CAS  Google Scholar 

  • Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  PubMed  CAS  Google Scholar 

  • Brereton H, Harland M, Auld A, Barritt G (2000) Evidence that the TRP-1 protein is unlikely to account for store-operated Ca2+ inflow in Xenopus laevis oocytes. Mol Cell Biochem 214:63–74

    Article  PubMed  CAS  Google Scholar 

  • Brereton HM, Chen J, Rychkov G, Harland ML, Barritt GJ (2001) Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta 1540:107–126

    Article  PubMed  CAS  Google Scholar 

  • Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738

    Article  PubMed  CAS  Google Scholar 

  • Brownlow S, Sage S (2003) Rapid agonist-evoked coupling of type II Ins(1,4,5)P3 receptor with human transient receptor potential (hTRPC1)channels in human platelets. Biochem J 375:697–704

    Article  PubMed  CAS  Google Scholar 

  • Brownlow S, Sage S (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94:839–845

    PubMed  Google Scholar 

  • Brownlow SL, Harper AG, Harper MT, Sage SO (2004) A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 35:107–113

    Article  PubMed  CAS  Google Scholar 

  • Brueggemann LI, Markun DR, Henderson KK, Cribbs LL, Byron KL (2006) Pharmacological and electrophysiological characterization of store-operated currents and capacitative Ca2+ entry in vascular smooth muscle cells. J Pharmacol Exp Ther 317:488–499

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Fatherazi S, Presland RB, Belton CM, Roberts FA, Goodwin PC, Schubert MM, Izutsu KT (2006) Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch 452:43–52

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Barritt GJ (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca2+-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J 373:327–336

    Article  PubMed  CAS  Google Scholar 

  • Clapham D, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450

    Article  PubMed  CAS  Google Scholar 

  • Crousillac S, Lerouge M, Rankin M, Gleason E (2003) Immunolocalization of TRPC channel subunits 1 and 4 in the chicken retina. Vis Neurosci 20:453–463

    Article  PubMed  Google Scholar 

  • Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM (2002) Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod 8:946–951

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 34:209–220

    Article  PubMed  CAS  Google Scholar 

  • Dohke Y, Oh YS, Ambudkar IS, Turner RJ (2004) Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J Biol Chem 279:12242–12248

    Article  PubMed  CAS  Google Scholar 

  • Eder P, Poteser M, Romanin C, Groschner K (2005) Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signalling. Pflugers Arch 451:99–104

    Article  PubMed  CAS  Google Scholar 

  • Engelke M, Friedrich O, Budde P, Schafer C, Niemann U, Zitt C, Jungling E, Rocks O, Luckhoff A, Frey J (2002) Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Lett 523:193–199

    Article  PubMed  CAS  Google Scholar 

  • Fiorio-Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701

    Article  PubMed  Google Scholar 

  • Glazebrook PA, Schilling WP, Kunze DL (2005) TRPC channels as signal transducers. Pflugers Arch 451:125–130

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins W, Zuo CD, Estacion M, Schilling W (2006) Identification and localization of TRPC channels in rat kidney. Am J Physiol 290:F1241–F1252

    CAS  Google Scholar 

  • Golovina VA (2005) Visualization of localized store-operated calciumentry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564:737–749

    Article  PubMed  CAS  Google Scholar 

  • Gregory RB, Sykiotis D, Barritt GJ (2003) Evidence that store-operated Ca2+ channels are more effective than intracellular messenger-activated non-selective cation channels in refilling rat hepatocyte intracellular Ca2+ stores. Cell Calcium 34:241–251

    Article  PubMed  CAS  Google Scholar 

  • Hassock S, Zhu M, Trost C, Flockerzi V, Authi K (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100:2801–2811

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Kim JY, Zeng W, Muallem S (2005) Protein-protein interaction and function TRPC channels. Pflugers Arch 451:116–124

    Article  PubMed  CAS  Google Scholar 

  • Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX (2004) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287:L962–L969

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann-Marche C, Freyssinet JM, Martinez MC (2002) Loss of plasma membrane phospholipid asymmetry requires raft integrity. J Biol Chem 277:19876–19881

    Article  PubMed  CAS  Google Scholar 

  • Larsson KP, Peltonen HM, Bart G, Louhivuori LM, Penttonen A, Antikainen M, Kukkonen JP, Akerman KE (2005) Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation. J Biol Chem 280:1771–1781

    Article  PubMed  CAS  Google Scholar 

  • Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxiainduced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  PubMed  CAS  Google Scholar 

  • Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglyceroland Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805

    PubMed  CAS  Google Scholar 

  • Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, OConnell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5–S6 region. J Biol Chem 278:11337–11343

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606

    Article  PubMed  CAS  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  PubMed  CAS  Google Scholar 

  • Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily interacts with the ankyrinlike repeat domain of TRPC. J Biol Chem 280:19393–19400

    Article  PubMed  CAS  Google Scholar 

  • Ma R, Rundle D, Jacks J, Koch M, Downs T, Tsiokas L (2003) Inhibitor of myogenic family, a novel suppressor of store-operated currents through an interaction with TRPC1. J Biol Chem 278:52763–52772

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492–33500

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Sugimoto K, Hara Y, Mori E, Morii T, Kurosaki T, Mori Y (2003) Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCγ2 in B lymphocytes. EMBO J 22:4677–4688

    Article  PubMed  CAS  Google Scholar 

  • Ong HL, Chen J, Chataway T, Brereton H, Zhang L, Downs T, Tsiokas L, Barritt G (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364:641–648

    Article  PubMed  CAS  Google Scholar 

  • Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  PubMed  CAS  Google Scholar 

  • Parekh A, Putney J (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Putney J (2005) Physiological mechanisms of TRPC activation. Pflugers Arch 451:29–34

    Article  PubMed  CAS  Google Scholar 

  • Ramsey I, Delling M, Clapham D (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  • Rao J, Platoshyn O, Golovina V, Liu L, Zou T, Marasa B, Turner D, Yuan J, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol 290:G782–792

    CAS  Google Scholar 

  • Rosado J, Sage S (2001) Activationof store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-triphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356:191–198

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000) Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1when intracellular Ca2+ stores are depleted. Biochem J 350:631–635

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163

    Article  PubMed  CAS  Google Scholar 

  • Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic β-cells. Diabetologia 40:528–532

    Article  PubMed  CAS  Google Scholar 

  • Shim S, Goh E, Ge S, Sailor K, Yuan J, Roderick H, Bootman M, Worley P, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8:730–735

    Article  PubMed  CAS  Google Scholar 

  • Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca2+-dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9:739–750

    Article  PubMed  CAS  Google Scholar 

  • Sinkins W, Estacion M, Schilling W (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331:331–339

    PubMed  CAS  Google Scholar 

  • Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279:34521–34529

    Article  PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  • Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol 283:L144–L155

    CAS  Google Scholar 

  • Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  PubMed  CAS  Google Scholar 

  • Tomita Y, Kaneko S, Funayama M, Kondo H, Satoh M, Akaike A (1998) Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rat homologue of TRP, expressed in Xenopus oocytes. Neurosci Lett 248:195–198

    Article  PubMed  CAS  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  PubMed  CAS  Google Scholar 

  • Tu CL, Chang W, Bikle DD (2005) Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes. J Invest Dermatol 124:187–197

    Article  PubMed  CAS  Google Scholar 

  • Uehara K (2005) Localization of TRPC1 channel in the sinus endothelial cells of rat spleen. Histochem Cell Biol 123:347–356

    Article  PubMed  CAS  Google Scholar 

  • Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277:42178–42187

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Wedel B, Aziz O, Trebak M, Putney J (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36

    Article  PubMed  CAS  Google Scholar 

  • von-Bohlen-Und-Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206

    Article  PubMed  Google Scholar 

  • Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    Article  PubMed  CAS  Google Scholar 

  • Wang W, OConnell B, Dykeman R, Sakai T, Delporte C, Swaim W, Zhu X, Birnbaumer L, Ambudkar IS (1999) Cloning of Trp1beta isoform from rat brain: immunodetection and localization of the endogenous Trp1 protein. Am J Physiol 276:C969–C979

    PubMed  CAS  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol 278:C526–C536

    CAS  Google Scholar 

  • Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88:84–87

    PubMed  CAS  Google Scholar 

  • Xu SZ, Zeng F, Lei M, Li J, Gao B, Xiong C, Sivaprasadarao A, Beech D (2005) Generation of functional ion-channel tools by E3 targeting. Nat Biotechnol 23:1234–1235

    Article  CAS  Google Scholar 

  • Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  CAS  Google Scholar 

  • Zagranichnaya T, Wu X, Villereal M (2005) Endogenous TRPC1, TRPC3 and TRPC7 proteins combine to form native store-operated channels in HEK-293cells. J Biol Chem 280:29559–29569

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xia SL, Block E, Patel J (2002) No upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol 283:1080–1089

    Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang MS, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. J Biol Chem 273:133–142

    Article  PubMed  CAS  Google Scholar 

  • Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rychkov, G., Barritt, G.J. (2007). TRPC1 Ca2+-Permeable Channels in Animal Cells. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_2

Download citation

Publish with us

Policies and ethics